Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Envisat tracking Africa’s rivers and lakes to help manage water resources

06.10.2005


From this week, researchers worldwide can follow the flow of rivers and height of lakes across the African continent from the comfort of their desks. A new web-based demonstration launched to coincide with this week’s TIGER Workshop makes Envisat-derived altimetry data for African inland water freely available in near-real time.



Envisat’s Radar Altimeter-2 (RA-2) sensor fires around 1800 radar pulses a second down to the surface of the Earth, then measures very precisely how long it takes for those pulses to bounce back. This travel time can be used to calculate the height of the Earth’s oceans, ice masses, land surfaces, and also – thanks to a sophisticated algorithm developed by the UK’s De Montfort University (DMU) in Leicester under ESA contract – previously elusive results for rivers and lakes flowing over land.

The effort to develop the River and Lake product was led by Professor Philippa Berry of DMU’s Earth and Planetary Remote Sensing Laboratory: "Monitoring of water resources is vital over Africa, to enable best use of this precious commodity. Until now reliable information has been difficult to access because of the high cost in equipment, manpower and communications, and because it is difficult to obtain these precious hydrological data from many countries.


"However heights of inland water can now be measured directly from space using radar altimeters, currently carried on several satellites and originally designed to measure ocean height. This is a very exciting development which has the potential to transform the management of drought crises and water-related conflict around the world.

"Whilst data from a few selected large lakes has been available previously, the combination of DMU’s sophisticated processing scheme and the unique design of the Envisat altimeter have for the first time allowed near-real time measurements to be made over lakes and major rivers across Africa.

"The new system identified that part of each surface echo originating from inland water, enabling measurement of much smaller targets than has previously been possible. This, combined with the altimeter’s capability to return good data even in rough terrain, means that we can provide much more accurate and up-to-date water level information than has ever been possible before."

The demonstration website is being launched at this week’s ESA TIGER Workshop at ESRIN, the European Centre for Earth Observation in Frascati in Rome. Starting 3 October, this four-day event involves more than 200 African organisations from 31 countries, and aims to apply Earth Observation technologies in support of integrated water resource management.

"The information will be released using a web-based delivery service hosted at ESRIN," Berry added. "It will be available within three days of being measured by Envisat. The system may even be pushed further to deliver water levels in less than six hours, using near-real time data from the precise orbit determination system aboard the satellite known as DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite), in order to better satisfy the actual needs of users."

Following the TIGER Workshop the River and Lake demonstration system – which will start off by featuring products for Canada as well as Africa – will switch to other regions of the Earth on a periodic basis, beginning with Latin America.

Jerome Benveniste | alfa
Further information:
http://www.esa.int/esaEO/SEMM7B5Y3EE_index_0.html

More articles from Earth Sciences:

nachricht Seismic study reveals huge amount of water dragged into Earth's interior
18.12.2018 | National Science Foundation

nachricht A damming trend
17.12.2018 | Michigan State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>