Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tropical Deforestation Affects Rainfall in the U.S. and Around the Globe

13.09.2005


Today, scientists estimate that between one-third and one-half of our planet’s land surfaces have been transformed by human development



Now, a new study is offering insight into the long-term impacts of these changes, particularly the effects of large-scale deforestation in tropical regions on the global climate. Researchers from Duke University, Durham, N.C., analyzed multiple years of data using the NASA Goddard Institute for Space Studies General Circulation Computer Model (GCM) and Global Precipitation Climatology Project (GPCP) to produce several climate simulations. Their research found that deforestation in different areas of the globe affects rainfall patterns over a considerable region.

Deforestation in the Amazon region of South America (Amazonia) influences rainfall from Mexico to Texas and in the Gulf of Mexico. Similarly, deforesting lands in Central Africa affects precipitation in the upper and lower U.S Midwest, while deforestation in Southeast Asia was found to alter rainfall in China and the Balkan Peninsula. It is important to note that such changes primarily occur in certain seasons and that the combination of deforestation in these areas enhances rain in one region while reducing it in another.


This finding contradicts earlier research suggesting deforestation would result in a reduction in precipitation and increase in temperature in the Amazon basin, but carry no detectable impact on the global water cycle.

"Our study carried somewhat surprising results, showing that although the major impact of deforestation on precipitation is found in and near the deforested regions, it also has a strong influence on rainfall in the mid and even high latitudes," said Roni Avissar, lead author of the study, published in the April 2005 issue of the Journal of Hydrometeorology.

Specifically, deforestation of Amazonia was found to severely reduce rainfall in the Gulf of Mexico, Texas, and northern Mexico during the spring and summer seasons when water is crucial for agricultural productivity. Deforestation of Central Africa has a similar effect, causing a significant precipitation decrease in the lower U.S Midwest during the spring and summer and in the upper U.S. Midwest in winter and spring. Deforestation in Southeast Asia alters rainfall in China and the Balkan Peninsula most significantly.

Elimination of any of these tropical forests, Amazonia, Central Africa or Southeast Asia, considerably enhances rainfall in the southern tip of the Arabian Peninsula. However, the combined effect of deforestation in all three regions shifts the greatest precipitation decline in the U.S. to California during the winter season and further increases rainfall in the southern tip of the Arabian Peninsula.

Improved understanding of tropical forested regions is valuable to scientists because of their strong influence on the global climate. The Amazon Basin literally drives weather systems around the world. The tropics receive two-thirds of the world’s rainfall, and when it rains, water changes from liquid to vapor and back again, storing and releasing heat energy in the process. With so much rainfall, an incredible amount of heat is released into the atmosphere - making the tropics the Earth’s primary source of heat redistribution.

"Deforestation does not appear to modify the global average of precipitation, but it changes precipitation patterns and distributions by affecting the amount of both sensible heat and that released into the atmosphere when water vapor condenses, called latent heat," said Avissar. "Associated changes in air pressure distribution shift the typical global circulation patterns, sending storm systems off their typical paths." And, because of the Amazon’s location, any sort of weather hiccup from the area could signal serious changes for the rest of the world like droughts and severe storms.

Clearly, land-cover changes in tropical regions carry potentially significant consequences on water resources, wildfire frequency, agriculture and related activities at various remote locations. And while greenhouse gas emissions and pollutants receive considerable attention, this study shows that land-cover change is another important parameter that needs to be considered in climate policies, especially since deforestation rates in tropical Africa, Southeast Asia, and South America have remained constant or have increased over the past two decades. Land-cover change, depending on its nature, can either mitigate or exacerbate greenhouse warming.

The researchers caution that their results are based on numerical simulations performed with a single general circulation model and that reproducing the experiment with other computer models using different atmospheric variables would be beneficial. Current research is attempting to answer why deforestation has such a major influence on precipitation patterns during respective seasons.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/centers/goddard/news/topstory/2005/deforest_rainfall.html

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>