Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean Instrument Program Led by Scripps Set to Achieve World Coverage

13.09.2005


Scientists in Global Drifter Program deploy ceremonial 1,250th buoy



An ambitious idea spawned more than 20 years ago to develop a new way to watch the world change has come to fruition.

The Global Drifter Program (GDP), largely led by Scripps Institution of Oceanography at the University of California, San Diego, and Scripps Distinguished Professor Peter Niiler, will meet its lofty goal of blanketing the globe on Sept. 18 when the program’s 1,250th instrument is dropped in the ocean off Halifax, Nova Scotia, Canada.


GDP buoys, also called drifters, are designed to travel the oceans taking measurements of sea surface temperatures, ocean currents, air pressure and other parameters. By linking and disseminating the information relayed from each of these instruments in a global network, scientists and others have been able to produce new details about the world’s ocean processes, key information for weather and climate forecasting and important calibrations of satellite readings.

"When the GDP drifter data is combined with satellite measurements we can now obtain a complete, accurate map of the sea surface temperature of the world twice per week," said Niiler, a scientist in the Physical Oceanography Research Division at Scripps. "These ’weather maps’ of the ocean surface will tell us how Earth is warming up and where it is warming more than in other places. These combined data also give us an accurate picture of the changing currents and patterns of ocean circulation."

The GDP is a component of the National Oceanic and Atmospheric Administration’s (NOAA) Global Ocean Observing System and Global Climate Observing System.

According to Niiler, more than 250 research papers have been published with new findings derived through GDP circulation measurements. Many more have used its sea temperature measurements. Topics have ranged from El Niños and La Niñas to global climate change.

Niiler believes the impact of GDP information will continue to grow because of the distinct characteristics displayed in current systems off coasts around the world. Analyzing the strongest north-south current system in the world, the Agulhas Current off the eastern coast of South Africa, tells a much different story than studying the California Current, the north-south circulation of the north Pacific Ocean that travels just off California’s waters.

"The GDP observations are of great interest to people all over the world," said Niiler. "If you want to know what’s happening in your backyard, or you want to know what’s happening on a global basis, these data will assist you."

When Niiler called a meeting of scientists in Boulder, Colo., in 1982, surface temperature readings and circulation patterns were a mystery in large regions of the world, especially in the Southern Ocean.

"A large part of the world simply could not be sampled," said Niiler, "because most of the world’s ships don’t go there. We needed a new way."

Niiler and his colleagues resolved that such gaps could only be filled with a completely new system of observing the entire Earth’s oceans. They also decided that this mission could only be accomplished with the development of new ocean instruments.

With long-term support from Scripps, Niiler and his colleagues began to work with engineers in designing and developing low-cost, rugged drifters that measure currents with high accuracy and relay their sensor information through existing satellite communications systems. Scripps and Niiler eventually led the design, manufacture, deployment and research analysis of the program. Yet Scripps scientists could not do it all alone, Niiler stresses, and national and international partners played a significant role in the program’s development through organizations that include NOAA’s Atlantic Oceanographic and Meteorological Laboratory, various meteorological groups, oceanographers from 20 countries and nearly all United States government research funding agencies. In the future, NOAA will provide about 80 percent of the drifters to maintain the array.

Although the GDP has met its goal of populating the global ocean with 1,250 drifters, the array of instruments has become so valuable to science and other applications that the network will continue to grow. Challenges associated with drifter deployments in areas rarely visited by ships will be addressed by increasing future deployments by air. Drifters are now deployed by the United States Air Force’s "Hurricane Hunter Squadron" in front of hurricanes to obtain data on hurricane strength and size.

New ways of using the drifters as platforms for environmental sensors also are being explored, including measurements for rain, biochemical concentrations and surface conductivity.

Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>