Discovery of ’young’ material in meterorites defies linear theory of solar system’s origin

From order to disorder: A monkey wrench in solar system evolution?


A U of T scientist has found unexpectedly ‘young’ material in meteorites – a discovery that breaks open current theory on the earliest events of the solar system.

A paper published today in the August issue of Nature reports that the youngest known chondrules – the small grains of mineral that make up certain meteorites – have been identified in the meteorites known as Gujba and Hammadah al Hamra.

Researchers who have studied chondrules generally agree that most were formed as a sudden, repetitive heat, likely from a shock wave, condensed the nebula of dust floating around the early Sun. Thinking that an analysis of the chondrules in Gujba and Hammadah al Hamra would be appropriate for accurately dating this process, U of T geologist Yuri Amelin, together with lead author Alexander Krot of the University of Hawaii, studied the chondrules’ mineralogical structure and determined their isotopic age. “It soon became clear that these particular chondrules were not of a nebular origin,” says Amelin. “And the ages were quite different from what was expected. It was exciting.”

Amelin explains that not only were these chondrules not formed by a shock wave, but rather emerged much later than other chondrules. “They actually post-date the oldest asteroids,” he says. “We think these chondrules were formed by a giant plume of vapour produced when two planetary embryos, somewhere between moon-size and Mars-size, collided.”

What does this mean in the grand scheme of things? The evolution of the solar system has traditionally been seen as a linear process, through which gases around the early sun gradually cooled to form small particles that eventually clumped into asteroids and planets. Now there is evidence of chondrules forming at two very distinct times, and evidence that embryo planets already existed when chondrules were still forming. “It moves our understanding from order to disorder,” Amelin admits. “But I’m sure that as new data is collected, a new order will emerge.”

Financial support for this project was provided by NASA and the Canadian Space Agency.

Media Contact

Sonnet L’Abbe EurekAlert!

More Information:

http://www.utoronto.ca

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors