Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Volcanoes inner workings disclosed when the Earth moved

10.08.2005


While volcanologists can see the dome of the Soufriere Hills Volcano on the island of Montserrat grow and collapse, it takes instrumentation to delve beneath the surface. Now, Penn State geologists, using tiltmeter measurements, have investigated a shallow area under the dome and what they found was not quite what they expected.



"The Soufriere Hills Volcano has been building a lava dome, collapsing and rebuilding a dome since 1995, when it first erupted," says Dr. Christina Widiwijayanti, postdoctoral researcher in geosciences, working with Dr. Barry Voight, professor of geosciences. "We are working with data collected from tiltmeters in 1997 to try to understand the volcano’s behavior and what is happening inside."

Voight had placed several tiltmeters around the crater rim of the volcano in 1996-97, but no more than two were ever working at once and during the important June 25, 1997 dome collapse, only one was operational. However, from a record the previous month, two tiltmeters recorded the cycle of pressurization and depressurization that took place under the dome on a 3 to 30-hour cycle.


A tiltmeter, like a carpenter’s level, measures the local angular movement of the Earth. With synchronized data from two tiltmeters, the researchers, who included Dr. Amanda Clarke a former Penn State graduate student who is now an assistant professor at Arizona State University, and Dr. Derek Elsworth, professor of energy and geo-environmental engineering, could determine the depth of the source region causing the tilting near the dome. They reported their work in a recent issue of Geophysical Research Letters.

"But, what we really would like to know is the configuration of the pressurized area, its shape and size, as well as position," says Widiwijayanti. "We know the size and shape of the conduit system that delivers the lava, but our results suggest that a more extensive region is involved in the pressurization."

The researchers found the pressure to be centered about a half mile below the dome or nearly 2.5 miles above the magma chamber feeding the surface flow of lava. The magma tube or conduit in this area is about 100 feet in diameter, but, using tiltmeter data collected during the collapse, the researchers found that the region undergoing pressurization and depressurization is between about 700 and 1100 feet in diameter. The researchers used a sphere and a cylinder to model the pressurized area. The known size of the dome collapse could be used to calibrate the source pressure.

"When the dome collapses, the area should be rebounding, going up, but the tiltmeter shows that it goes down" said Widiwijayanti. "There must be something related to depressurizing the system in the volcano that does this."

The researchers believe that the region around the conduit is fractured, with the pore spaces filled by hot water and gas. "When the volcano conduit at depth is under pressure, super-heated steam and other gases can leak out of the conduit and raise the pressure in the fractured rock over a broad region. That is what we think we are seeing as the pressurized zone," says Voight.

The 1997 dome collapse, with 8.5 million cubic yards of lava and talus, was not the largest at the Soufriere Hills Volcano, although 19 people were killed by it and the event rewrote the political history of Montserrat. In July 2003 the dome collapse produced 275 million cubic yards, the largest on Earth in historic time.

The 2003 collapse was recorded using new and more varied equipment installed by the CALIPSO project (Caribbean Andesite Lava Island Precision Seismo-geodetic Observatory), funded by the National Science Foundation and the U.K. Environment Research Council. Voight is project director of the consortium, which involves a number of institutions in the U.S. and U.K. While researchers recorded the 1997 data before the initiation of CALIPSO, the analysis of both data sets is part of the project.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Ten-year anniversary of the Neumayer Station III
18.01.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht The pace at which the world’s permafrost soils are warming
16.01.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>