Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model gives clearer idea of how oxygen came to dominate Earth’s atmosphere

09.08.2005


A number of hypotheses have been used to explain how free oxygen first accumulated in Earth’s atmosphere some 2.4 billion years ago, but a full understanding has proven elusive. Now a new model offers plausible scenarios for how oxygen came to dominate the atmosphere, and why it took at least 300 million years after bacterial photosynthesis started producing oxygen in large quantities.



The big reason for the long delay was that processes such as volcanic gas production acted as sinks to consume free oxygen before it reached levels high enough to take over the atmosphere, said Mark Claire, a University of Washington doctoral student in astronomy and astrobiology. Free oxygen would combine with gases in a volcanic plume to form new compounds, and that process proved to be a significant oxygen sink, he said.

Another sink was iron delivered to the Earth’s outer crust by bombardment from space. Free oxygen was consumed as it oxidized, or rusted, the metal.


But Claire said that just changing the model to reflect different iron content in the outer crust makes a huge difference in when the model shows free oxygen filling the atmosphere. Increasing the actual iron content fivefold would have delayed oxygenation by more than 1 billion years, while cutting iron to one-fifth the actual level would have allowed oxygenation to happen more than 1 billion years earlier.

"We were fairly surprised that we could push the transition a billion years in either direction, because those levels of iron in the outer crust are certainly plausible given the chaotic nature of how Earth formed," he said.

Claire and colleagues David Catling, a UW affiliate professor in atmospheric sciences, and Kevin Zahnle of the National Aeronautics and Space Administration’s Ames Research Center in California will discuss their model tomorrow (Aug. 9) in Calgary, Alberta, during the Geological Society of America’s Earth System Processes 2 meeting.

Earth’s oxygen supply originated with cyanobacteria, tiny water-dwelling organisms that survive by photosynthesis. In that process, the bacteria convert carbon dioxide and water into organic carbon and free oxygen. But Claire noted that on the early Earth, free oxygen would quickly combine with an abundant element, hydrogen or carbon for instance, to form other compounds, and so free oxygen did not build up in the atmosphere very readily. Methane, a combination of carbon and hydrogen, became a dominant atmospheric gas.

With a sun much fainter and cooler than today, methane buildup warmed the planet to the point that life could survive. But methane was so abundant that it filled the upper reaches of the atmosphere, where such compounds are very rare today. There, ultraviolet exposure caused the methane to decompose and its freed hydrogen escaped into space, Claire said.

The loss of hydrogen atoms to space allowed increasingly greater amounts of free oxygen to oxidize the crust. Over time, that slowly diminished the amount of hydrogen released from the crust by the combination of pressure and temperature that formed the rocks in the crust.

"About 2.4 billion years ago, the long-term geologic sources of oxygen outweighed the sinks in a somewhat permanent fashion," Claire said. "Escaping to space is the only permanent escape that we envision for the hydrogen, and that drove the planet to a higher oxygen level."

The model developed by Claire, Catling and Zahnle indicates that as hydrogen atoms stripped from methane escaped into space, greenhouse conditions caused by the methane blanket quickly collapsed. Earth’s average temperature likely cooled by about 30 degrees Celsius, or 54 degrees Fahrenheit, and oxygen was able to dominate the atmosphere because there was no longer an overabundance of hydrogen to consume the oxygen.

The work is funded by NASA’s Astrobiology Institute and the National Science Foundation’s Integrative Graduate Education and Research Traineeship program, both of which foster research to understand life in the universe by examining the limits of life on Earth.

"There is interest in this work not just to know how an oxygen atmosphere came about on Earth but to look for oxygen signatures for other Earth-like planets," Claire said.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht Live from the ocean research vessel Atlantis
13.12.2018 | National Science Foundation

nachricht NSF-supported scientists present new research results on Earth's critical zone
13.12.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>