Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative measurement technology: our planet is "attractive" enough

22.07.2005


The Earth’s magnetic field is strong enough for some kinds of analyses – this opens up new opportunities for carrying out examinations under difficult conditions

Where x-rays no longer manage to see, magnets allow us to look inside. Patients know what that means: they lay down in the "tube" surrounded by an enormous electromagnet, the so-called MRI scanner. Such large pieces of equipment artificially create strong magnetic fields which enable doctors to take the pictures inside the patient’s body which they need for their diagnosis. Now scientists from the Research Centre Jülich, a Helmholtz Association institution, and the RWTH Aachen University of Technology have extended the spectrum of magnetic field scanning. Because they have discovered that the Earth’s natural magnetic field is strong enough for some examinations. And this closes a gap. Because it makes measurement with magnetic fields outdoors and under difficult conditions possible for the very first time. Although the applications will not initially be used in the field of medicine, they will make chemical analyses possible, such as when examining oil directly at source.

20,000 times weaker



When measuring with magnets, researchers use a natural phenomenon, namely that nuclei spin like a top, a property appropriately called "spin". The spin can be focused in a magnetic field to generate typical signals, so-called nuclear magnetic resonance. And it is this that opens up a wide range of insights for scientists into the composition and structure of matter. As a rule, they need very strong artificially produced magnetic fields for such work.

In experiments with the inert gas xenon, Helmholtz scientists were now able to show that under certain circumstances they can also use laser light to influence the spinning movement of the nuclei. In these cases, a weak magnetic field is already powerful enough for the analysis. Often, the Earth’s natural magnetic field is even strong enough. By comparison, the Earth’s magnetic field is around 20,000 times weaker than the field strengths used in these large pieces of equipment.

From inside Earth to solar wind

As Dr. Stephan Appelt from the Research Centre Jülich explains, a wide and diverse range of application options are conceivable. Besides chemical analyses outdoors and at hardly accessible places, geophysical examinations are also imaginable. "For example, we could survey the Earth’s magnetic field with the highest precision," explains Appelt. "Furthermore, we could also look into the Earth, so to speak." That would make it possible to gain a better understanding of the earthquake risks along local fault lines, such as the San Andreas Fault in California or of volcanism. A third field of application would be in astrophysics. "Nuclear magnetic resonance in the Earth’s magnetic field might also make it possible to measure the solar wind," believes Appelt. This wind is made up of particles ejected by the Sun and deviated by the Earth’s magnetic field – the Northern Lights, "Aurora Borealis", are a side-effect of this.

Finally, another possible area of application is also the measurement of very weak magnetic fields inside patients. This would enable doctors to produce detailed pictures for the examination of diseased organs. "It’s conceivable that contrast media could be used that contain xenon," explains Dr. Wolfgang Häsing from the Research Centre Jülich. "Patients could inhale these contrast media or they could be injected into them." All that would then be needed to carry out an MRI scan is a small additional magnetic field – the patient would be spared from the confines of the narrow tube. In fact, they would hardly notice the examination, because xenon is already used in medicine today, namely as an anaesthetic.

| alfa
Further information:
http://www.helmholtz.de

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>