Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovering an ecosystem beneath a collapsed Antarctic ice shelf

19.07.2005


The chance discovery of a vast ecosystem beneath the collapsed Larsen Ice Shelf will allow scientists to explore the uncharted life below Antarctica’s floating ice shelves and further probe the origins of life in extreme environments. Researchers discovered the sunless habitat after a recent underwater video study examining a deep glacial trough in the northwestern Weddell Sea following the sudden Larsen B shelf collapse in 2002.



"This is definitely the biggest thing I’ve ever been involved with in the Antarctic," said Eugene Domack, a professor at Hamilton College in New York and lead author of the report detailing the ecosystem. The article will be published in the 19 July issue of Eos, the weekly newspaper of the American Geophysical Union. "Seeing these organisms on the ocean bottom--it’s like lifting the carpet off the floor and finding a layer that you never knew was there."

Domack suggests the strong possibility that new species of marine life may be uncovered in continuing analyses of the area as ecosystem experts sample the site. The international expedition was there on a U.S. Antarctic Program cruise to study the sediment record in the area vacated by the former ice shelf. The crew recorded a video of the seafloor at the end of its mission and only later discovered a thriving clam community, mud volcanoes, and a thin layer of bacterial mats.


The discovery could provide evidence for researchers to better understand the dynamics within the inhospitable sub-ice setting, which covers more than 1.5 million square kilometers [nearly 580,000 square miles] of seafloor, or an area of the same magnitude as the Amazon basin in Brazil or the Sahara Desert. The ecosystem, known as a "cold-seep" (or cold-vent) community, is fed by chemical energy from within the Earth, unlike ecosystems that are driven by photosynthesis or hot emissions from the planet’s crust. Domack and his coauthors propose that methane from deep underwater vents likely provide the energy source capable of sustaining the chemical life at the observed 850-meter [approximately 2800-foot] depth.

Such extreme cold-vent regions have previously been found near Monterey, California, where the phenomenon was discovered in 1984, in the Gulf of Mexico, and deep within the Sea of Japan. The recent report, however, presents the first finding of the type in the Antarctic, where the near-freezing water temperatures and almost completely uncharted territory will likely provide a baseline for researchers to probe portions of the ocean floor that have been undisturbed for nearly 10,000 years. The researchers speculate, for example, that the ice shelves themselves may have played a critical role in allowing the chemical habitat to thrive on the seafloor when it otherwise might not have established itself.

Domack noted, however, that the calving of the Larsen B Shelf has opened the pristine chemical-based ecosystem to disturbances and debris that have already begun to bury the delicate mats and mollusks established within the underwater environment. He added that there may be a sense of urgency to investigate the unusual seafloor ecology below the Larsen shelf because of the likelihood of increased sediment deposition.

In addition, he suggests that the newfound system may provide incentive to launch studies to other remote undersea environments in the poles and in other glacial settings such as Lake Vostok, also in the Antarctic, to further explore the little-understood connection where ice sheets, the seafloor, and circulating water meet. The researchers indicate that the knowledge gained from any subsequent studies could enhance the examination of subterranean water on Earth or the hypothesized ocean beneath the surface on the Jovian moon Europa.

Harvey Leifert | EurekAlert!
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>