Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia Tech, Nanjing Institute researchers discover half-billion year-old fossils

12.07.2005


Unusually preserved fossils shed new light on how macroscopic, complex life evolved and lived 550 million years ago



Scientists interested in ancient life have a wealth of fossils and impressions frozen in rocks that they can study from as far back as 540 million years ago – when animals with shells and bones began to become plentiful. But evidence of complex life older than 540 million years is scant and difficult to study.

Now, a research team from Virginia Tech in the United States and Nanjing Institute of Geology and Paleontology in China has discovered uniquely well-preserved fossils form from 550 million year old rocks of the Ediacaran Period. Shuhai Xiao, geoscientist from Virginia Tech, with Bing Shen, a Virginia Tech graduate student, and Chuanming Zhou, Guwei Xie, and Xunlai Yuan, all of the Nanjing Instititue of Geology and Paleontology, report in the Proceedings of the National Academy of Sciences (PNAS) the discovery of these unusually preserved fossils which reveal unprecedented information about the body construction of macroscopic organisms more than half billion years ago. The article has been published in the PNAS Online Early Edition the week of July 11 - 15, 2005.


Ediacara fossils, named after Ediacara Hill in the Flinders Ranges of South Australia where such fossils are best known, are some of the oldest fossils with large body size and complex morphology. "Present in rocks ranging from 575 to 540 million years in age, these fossils provide the key to understand the prelude to the Cambrian Explosion when animals with skeletons and familiar morphologies began to bloom about 540-520 million years ago," Xiao said, "However, classic Ediacara fossils are mostly preserved in sandstone, and the coarse sand grains limit how much we can learn about the fine-scale morphologies of these fossils."

Partly because of this limitation, scientists cannot agree on the fine-scale anatomy of Ediacara organisms and have been debating for decades their relationships with animals and other macroscopic life forms. Traditionally, Ediacara organisms are thought to be related to such animals as jellyfishes and worms. Other scientists, however, believe that they may be plants or fungi. Twenty years ago, however, Adolf Seilacher, a paleontologist now retired from University of Tubingen (Universität Tübingen) and Yale University, argued that many Ediacara organisms were built of tube-like elements and are only distantly related to living animals. "But direct observation of the hypothesized tube-like elements has been difficult because such tubes tend to be deflated and squashed prior to their preservation in sandstones," Xiao said.

This may change with the new discovery of Ediacara fossils from fine-grained limestone of the Dengying Formation in South China by Xiao and his collaborators. "The Ediacara fossils from China were not deflated before they were incorporated in the rock," said Shen, "instead, they are preserved three-dimensionally in the rock." Using serial thin sectioning techniques, Shen and Xiao cut the decimeter-sized fossils into many paper-thin slices and looked at them under a microscope. They saw organic remains of millimeter-sized tubes that were the building blocks of the Ediacara fossils from China. Their discovery thus directly confirms Seilacher’s hypothesis.

The new fossils also help to refine the Seilacher hypothesis. Seilacher originally hypothesized that Ediacara tubes had closed ends and were filled with cytoplasm, or cell contents. The fossils from China, however, appear to have an open end that is connected with the external environment. Thus, Xiao and his colleagues infer that the tubes of their Ediacara fossils were probably not filled with cytoplasm.

Ediacara organisms had no shells or bones. How could such soft and delicate organisms be preserved in rocks? Working with Geosciences Professor Fred Read at Virginia Tech, Geology Professor Guy Narbonne at Queen’s University, and paleontologist James Gehling at South Australia Museum, Xiao and his colleagues carefully examined the calcite crystals that replicate the tubes. They believe that the crystals were emplaced shortly after the death, burial, and decay of the Ediacara organisms, thus replicating the three-dimensional shape of the tubular structures.

How did these Ediacara organisms live? "We think that the fossils were preserved where they lived. In other words, they had not been transported a long way from their deathbed to their graveyard." Zhou said, "And the way they occur in the rocks suggests that they were flat-lying organisms sprawling on the ocean floor 550 million years ago, much like some fungi, lichen, or algae do today."

The resemblance to modern fungi, lichen, or algae may stop at the seemingly similar life position on ocean floor. "In fact, the morphology of the new fossils is unlike any living macroscopic life," Xiao said, "and at this time it is still uncertain how the Ediacara fossils from South China are related to other Ediacara organisms and to living organisms."

But the new fossils surely will enlighten the ongoing debate on the nature of Ediacara organisms that lived just before the evolution of familiar animals about 540-520 million years ago.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>