Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

El Niño and La Niña Mix Up Plankton Populations

24.06.2005


El Niño and La Niña play with the populations of microscopic ocean plants called phytoplankton. That’s what scientists have found using NASA satellite data and a computer model.



Phytoplankton are the base of the marine food chain, providing food for little sea animals called zooplankton, which in turn feed fish and other creatures. Any change in phytoplankton numbers alters the ocean food chain.

The computer model showed that during El Niño periods, warm waters from the Western Pacific Ocean spread out over much of the ocean basin as upwelling weakens in the Eastern Pacific Ocean. Upwelling brings cool, nutrient-rich water from the deep ocean up to the surface. When the upwelling is weakened, there are less phytoplankton, making food more scarce for zooplankton that eat the ocean plants.


During La Niña conditions as in 1998, the opposite effect occurs as the easterly trade winds pick up and upwelling intensifies bringing nutrients like iron to the surface waters, which increases phytoplankton growth. Sometimes, the growth can take place quickly, developing into what scientists call phytoplankton "blooms."

In a study published in the January 2005 issue of Geophysical Research Letters, Wendy Wang and colleagues at the University of Maryland Earth System Science Interdisciplinary Center, College Park, Md., found that changes in phytoplankton amounts due to El Niño and La Niña not only affect the food chain, but also influence Earth’s climate.

As phytoplankton flourish during La Niña years, a large amount of carbon is used to build their cells during photosynthesis. The plants get carbon from carbon dioxide in surface waters. In the atmosphere, carbon dioxide is an important greenhouse gas. When marine organisms die, they carry carbon in their cells to the deep ocean. Surprisingly, this study found that this transfer of carbon to the deep ocean increased by a factor of eight due to the large phytoplankton blooms that can occur during a La Niña. At the same time, the effects of El Niños can reduce phytoplankton numbers, and decrease the impacts of this "biological carbon pump."

Using a computer model and NASA’s Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite, Wang examined marine biological changes associated with El Niño and La Niña, and found the mechanisms responsible for such phytoplankton blooms. SeaWiFS measures the amount of light coming out of the ocean at different wavelengths on the spectrum, and can determine the strength of the greenness coming from the tiny plants’ cells.

When the El Niño of 1997-1998 became a La Niña beginning in mid-1998, SeaWiFS imagery showed extremely dark greenness along the equator. "[At that time SeaWifs showed] chlorophyll concentrations increasing by more than 500 percent, a level not previously observed," said Wang. The study found that because most microscopic animals called zooplankton died off during the El Niño there were less around to eat phytoplankton. That led to large phytoplankton blooms.

Besides influencing the marine food web, phytoplankton also help regulate the Earth’s climate by accounting for about half of the carbon dioxide, a major greenhouse gas, absorbed annually from the atmosphere by plants.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/vision/earth/lookingatearth/plankton_elnino.html
http://www.gsfc.nasa.gov

More articles from Earth Sciences:

nachricht Neutron source enables a look inside dino eggs
22.01.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Ozone-depleting substances caused half of late 20th-century Arctic warming, says study
21.01.2020 | Earth Institute at Columbia University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Researchers discover vaccine to strengthen the immune system of plants

24.01.2020 | Life Sciences

Brain-cell helpers powered by norepinephrine during fear-memory formation

24.01.2020 | Life Sciences

Engineered capillaries model traffic in tiny blood vessels

24.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>