Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Indian Ocean earthquake data suggest disaster warnings too conservative

20.05.2005


The December earthquake and tsunami that killed approximately 300,000 people in the Indian Ocean region was so powerful that no point on Earth went undisturbed, pointing to the need for more active warnings about the consequences of future events, according to University of Colorado at Boulder seismologist Roger Bilham.



Bilham offers his perspective in "A Flying Start, Then a Slow Slip," an overview of findings on the Sumatra-Andaman earthquake published in the May 20 issue of Science Magazine. The issue also includes four technical papers by other authors describing the complex rupture process of the earthquake.

"No point on Earth remained undisturbed at the centimeter level," Bilham said. "The earthquake’s uplift reduced the capacity of the Bay of Bengal and the Andaman Sea, raising sea level around the world by about .1 millimeter.


"If not for the remarkably slow plate movement at the northern end of the earthquake, there might have been much more widespread and severe damage on the coasts of India, Myanmar and Thailand," Bilham said.

Two years ago, Bilham published a study of an 1881 earthquake in the same region and predicted that a similar event could occur sometime between 2004 and 2054. Bilham didn’t anticipate the strength of the 2004 event, though, and said officials need to consider extreme worst-case scenarios as well as more probable earthquake scenarios.

"The region has a history of major earthquakes, including ones in 1833 and 1861. Regardless, there was no precedent for the complexity and magnitude of the 2004 earthquake. This should be a wake-up call that conservative seismic forecasts may not serve society well," he said.

"This earthquake happened at the worst possible time – on a very popular holiday when many people were at the beach instead of at work or in school, and at high tide in India, which increased the tsunami run-up there by one meter," Bilham said.

The Dec. 26 quake was the second largest ever recorded, and the third most fatal in human history. The energy released was equivalent to a 100 giga-ton bomb, or the amount of energy consumed in the U.S. every six months, according to Bilham. "More than 30 cubic kilometers of water were displaced by the shifting sea floor, resulting in a tsunami that traveled as far away as the Antarctic, both coasts of the Americas and even the Arctic Ocean."

Using data recorded by digital seismometers all over the world, scientists were able to determine the direction and speed of the rupturing seafloor.

"The rupture opened lengthwise at 5,000 miles per hour during the first 10 minutes of the earthquake. Seismometers in Russia and Australia recorded the event like a noisy fire engine racing northward," Bilham said. He explained that Russian seismometers recorded higher frequency sounds than those recorded in Australia, revealing a seismic Doppler effect as the sound traveled away from Australia and toward Russia.

For seismologists including Bilham, this was the first catastrophic earthquake that could be analyzed using the latest and most sensitive scientific equipment. "As a result, we will learn numerous new things about our planet, and in particular about the Pacific Northwest, where a similar earthquake could occur at any time," he said.

Scientists believe that a major earthquake and tsunami hit the Pacific Northwest around 1700 along the Cascadia Subduction Zone and that the northwest will experience major quakes, and possibly tsunamis, in the future.

Roger Bilham | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>