Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Map of life on Earth could be used on Mars

11.05.2005


Finding the ’peculiar’ ancestor



A geologist from Washington University in St. Louis is developing new techniques to render a more coherent story of how primitive life arose and diverged on Earth — with implications for Mars.

Carrine Blank, Ph.D., Washington University assistant professor of earth and planetary sciences in Arts & Sciences, has some insight concerning terrestrial microbes that could lead to provocative conclusions about the nature of life on Mars and other planets.


Blank approaches the task by resolving phylogenetic trees. These trees, based upon genetic sequencing data, trace the genetic relationships between what we think of as primitive organisms through trait development. The relationships between early forms of life can illuminate the relationships between organisms present on Earth today — which fossil evidence and a method called isotopic fractionation have failed to show conclusively.

Blank most recently presented her research at the 2004 annual meeting of the Geological Society of America.

Haves and have-nots

Microorganisms can be divided into haves and have-nots: cells of eukaryotes contain a nucleus, while prokaryotic organisms cells do not. Prokaryotic organisms encompass archeal and bacterial domains of life. Archeal organisms diverge further into euryarcheota and Crenarcheota lineages. By piecing together genetic sequences of the three types of prokaryotic organisms, Blank creates a genetic flow chart, which can be interpreted to trace the appearance of environmental adaptations across billions of years of evolution.

Genes are inherited from parents, but can transfer from one organism to another without reproducing by a process called lateral gene transfer. Modular metabolic genes, which are not critical for cell production, account for most lateral gene transfers between microbes.

"There is a lot we’re beginning to understand in terms of bacterial evolution that is still not quite clear," Blank said. "What we’re trying to resolve is the evolutionary history of the core of the bacterial cell. The core is that which is not undergoing this lateral gene transfer, or does it extremely rarely."

Jumping genes

Jumping genes may be a headache for researchers, but they serve an important ecological purpose, helping other organisms to succeed in their habitats, and can illuminate trait development across the tree of life.

"We try to construct the core with gene sequences, and then we look at the distribution of traits such as those involved in metabolism by laying it onto the tree," she said.

Timely appearances of certain traits among prokaryotes on the tree of life can betray a trend of habitat divergence, facilitated by lateral gene transfer. The emergence of traits corresponding to measurable changes in the known geologic record allow researchers to date organisms with relative certainty. Blank can then use chronological data to analyze niche specialization, "where these organisms like to grow," among members of each life domain over geologic time.

Habitat divergence among bacteria is consistent with patterns of divergence among the other prokaryotes, Blank’s research shows. She notes a pervasive trend of cyanobacterial organisms diverging from low-salinity environments into marine environments over time.

"We have the ancestral Archeae — it diverges into two major lineages, the Crenarchaeota and the Euryarchaeota, one which grows in marine environments, the other on continents," Blank said. "They grow and diverge for perhaps a billion years, and then they start colonizing each other’s environments. The marine Euryarchaeota eventually colonize the terrestrial environments and the Crenarchaeota colonize the marine environments. My point is that it could have taken a very long time for them to come back and to form even more complex ecosystems. So the literal interpretation of these patterns is that early habitat specialization could have lasted for a billion years."

After mapping early habitat divergences onto the tree, Blank observes that the ancestors of each of the three kinds of prokaryotes inhabited one of Earth’s three types of hydrothermal systems, which include sulfurous steam vents like those which smatter the Yellowstone caldera, hydrothermal deep-sea vents, and boiling silica-depositing springs.

"Is it a coincidence, then, that we have three hydrothermal habitats and three major groups of prokaryotes? We aren’t sure," she said. "This could suggest that we have some really ancient habitat specialization. These lineages specialize in these three habitats, and diverge in these habitats for many hundreds of million years before they start moving into other types of habitats."

The ’peculiar’ ancestor

It isn’t clear why bacteria diversified later, though environmental changes, like periods of global glaciation nicknamed "snowball Earth," could have provided the impetus that demanded microbial adaptation. Whatever the cause, new adaptive microbial traits can be very different from those of their "peculiar" ancestors. It seems that, on some level, humans and bacteria can relate.

"If we see these major patterns of divergence on Earth, we should expect to see similar patterns on life on Mars, that is, if life ever existed there," Blank said. "Not the same patterns, because Mars has had a different history, but we should see trends that are analogous. You would expect to see a peculiar ancestor specialized to a unique niche, eventually diverging into descendants that have very different traits than their ancestor did. These descendents would have adapted to changes that would’ve happened in Mars’s history."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Earth Sciences:

nachricht A damming trend
17.12.2018 | Michigan State University

nachricht Live from the ocean research vessel Atlantis
13.12.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>