Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New thermometer reveals wet conditions on earliest Earth

06.05.2005


Researchers at Rensselaer Polytechnic Institute and Australian National University have found new evidence that environmental conditions on early Earth, within 200 million years of solar system formation, were characterized by liquid-water oceans and continental crust similar to those of the present day. The researchers developed a new thermometer that made the discovery possible.



"Our data support recent theories that Earth began a pattern of crust formation, erosion, and sediment recycling as early in its evolution as 4.35 billion years ago, which contrasts with the hot, violent environment envisioned for our young planet by most researchers and opens up the possibility that life got a very early foothold," said E. Bruce Watson, Institute Professor of Science and professor of geochemistry at Rensselaer Polytechnic Institute.

According to Watson, the research provides important information and a new technique for making additional discoveries about the first eon of Earth’s history, the Hadean eon, a time period for which still little is known.


The research findings are reported in the May 6 issue of the journal Science in a paper titled "Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth."

Watson collaborated with co-author T. Mark Harrison, director of the Research School of Earth Sciences at Australian National University and professor of geochemistry at UCLA, on the research. The work was supported by the National Science Foundation (NSF), the Australian Research Council, and the NASA Astrobiology Institute.

Watson and Harrison developed a new thermometer that involves the measurement of the titanium content of zircon crystals to determine their crystallization temperature. Zircons are tiny crystals embedded in rock that are the oldest known materials on Earth. Zircons pre-date by 400 million years the oldest known rocks on Earth. These ancient crystals provide researchers with a window into the earliest history of the Earth and have been used to date the assembly and movement of continents and oceans.

"Zircons allow us to go further back in geologic time because they survive processes that rocks do not," said Watson. "Although they measure only a fraction of a millimeter in size, zircons hold a wealth of information about the very earliest history of Earth."

In Watson and Harrison’s work, zircons from the Jack Hills area of Western Australia ranging in age from 4.0 to 4.35 billion years were analyzed using the thermometer. The new temperature data supports the existence of wet, minimum-melting conditions within 200 million years of solar system formation, according to the researchers. In the Science paper, the researchers discuss how the thermometer provides clear distinction between zircons crystallized in the mantle, in granites, and during metamorphism, thereby providing consistent information about the conditions on Earth during the crystals’ formation.

Watson describes his research as "materials science of the Earth," because it involves designing and executing laboratory experiments at the high temperatures and pressures found in the Earth’s deep crust and upper mantle. He teaches undergraduate and graduate geology courses at Rensselaer, including Natural Sciences, Introduction to Geochemistry, and Earth Materials.

Tiffany Lohwater | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>