Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whale bones and farm soil: Sequencing biodiversity

22.04.2005


Instead of sequencing the genome of one organism, why not sequence a drop of sea water, a gram of farm soil or even a sunken whale skeleton? Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg and their US collaborators have done just that, and the result is a new appreciation for the rich diversity of life that exists in the most unlikely places (Science, April 22, 2005).



Bacteria make up the greatest mass of life on earth by far and play a crucial role in the lives of all other organisms. But scientists have only touched the tip of the iceberg when it comes to identifying bacteria – 99% of species cannot be grown by standard techniques in the laboratory. The emerging field of “metagenomics” is rapidly giving researchers a view of how diverse microbial life really is. Instead of analyzing the genome of a specific organism, scientists sequence the DNA from environmental samples such as the ocean or soil. For the first time, this gives them a clear picture of the diversity of life in these habitats.

“These studies were simply not possible before,” says Peer Bork, the EMBL scientist responsible for the data analysis in the project. "And future applications for this type of technology are endless, from giving farmers insight into their soil to fighting bacterial contamination in hospitals to characterizing microbes in a patient’s mouth.”


In the current study, Bork worked with EMBL scientist Christian von Mering and US collaborators to analyze two very different samples: whale skeletons from the bottom of the ocean floor and soil from a farm in the USA. Sunken whale skeletons are a lipid-rich nutrient source that can foster the growth of a flourishing ecosystem that contains specialized bacteria, whereas soil is an example of a complex microbial environment that can contain more than 3000 distinct species (most of them bacterial) in a half-gram sample.

The scientists started by sequencing hundreds of thousands of genes from each sample – the DNA equivalent of about 50 complete bacterial genomes. This data was then complemented by two recently published data sets from studies on surface water and on acidic underground mine water, enabling for the first time a comparative study of life in four different habitats.

From the genes in each environmental sample, scientists constructed a “functional fingerprint” of each habitat. These fingerprints revealed that the way in which each bacterial community had adapted to different environmental conditions was reflected in its genetic material. Different classes of genes were found to be specifically enriched in each environment, for example enzymes that break down plant material in the soil sample or photosynthetic genes in the surface water. Apart from known genes, the scientists also found many new environment-specific genes whose function was not previously known. Often, they could predict their broad functional class from the gene’s location in the DNA fragment. In soil, for example, many novel genes were predicted to be involved in DNA repair and in the biosynthesis of antibiotics.

“Although only a limited number of pieces of the puzzle have been revealed through the many thousands of fragments of DNA from different organisms, they are sufficient to capture differences between the communities from genome sizes to lifestyle,” Bork says.

This type of approach could provide more information on environments about which little is known – permitting estimates of the nutrient supply in the soil or pollution levels in the sea. The data may also be used as the starting point for estimating the total number of species on earth, as well as the number of cellular processes that make life so complex.

Trista Dawson | alfa
Further information:
http://www.embl.de

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>