Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth’s Auroras Don’t Mirror

06.04.2005


Thanks to observations from the ground and satellites in space, scientists know that the North and South Poles light up at night with Auroras because a "solar wind" of electrified gas continually flows outward from the sun at high speed in all directions, including toward the Earth. Recently, however, NASA and university scientists looking at the Earth’s northern and southern auroras were surprised to find they aren’t mirror images of each other, as was once thought.



According to scientists, the main cause behind the differences in location appears to be what occurs between the solar wind and Earth’s magnetic field.

The Earth’s magnetic field, like that of the sun and some of the other planets, is generated by electrical currents flowing inside them. The sun’s magnetic field, like that of Earth, has a north and south pole linked by lines of magnetic force.


Looking at the auroras from space, they look like almost circular bands of light around the North and South Poles. At the North Pole, it’s called aurora borealis, or northern lights, and at the South Pole it’s called the aurora australis, or southern lights.

From spacecraft observations made in October, 2002, scientists noticed that these circular bands of aurora shift in opposite directions to each other depending on the orientation of the sun’s magnetic field, which travels toward the Earth with the solar wind flow. They also noted that the auroras shift in opposite directions to each other depending on how far the Earth’s northern magnetic pole is leaning toward the sun.

What was most surprising was that both the northern and southern auroral ovals were leaning toward the dawn (morning) side of the Earth for this event. The scientists suspect the leaning may be related to "imperfections" of the Earth’s magnetic field.

"This is the first analysis to use simultaneous observations of the whole aurora in both the northern and southern hemispheres to track their locations," said lead author Timothy J. Stubbs of the Laboratory for Extraterrestrial Physics at NASA’s Goddard Space Flight Center (LEP/GSFC), Greenbelt, Md.

The Earth’s magnetic field provides an obstacle in the flow of the solar wind, and it becomes compressed into what looks like an extended tear-drop shaped bubble known as the "magnetosphere." The magnetosphere protects the Earth by shielding it from the solar wind. However, under certain conditions charged particles from the solar wind are able to get through Earth’s magnetic shield and get energized. When this happens, they crash into the Earth’s upper atmosphere and create the light which we see as an "aurora."

Stubbs and his colleagues, Richard R. Vondrak, and John B. Sigwarth, both of LEP/GSFC, Nikolai Østgaard at the University of Bergen, Norway and Louis A. Frank at the University of Iowa, used data from NASA’s Polar and IMAGE (Imager for Magnetopause-to-Aurora Global Exploration) spacecraft to study the auroras. It was by luck that the orbits of Polar and IMAGE were aligned such that the entire auroras at the north and south poles could be observed in detail at the same time.

By knowing how auroras react to the solar wind, scientists can better determine the impacts of space weather in the future. The new discovery shows that auroras may be more complicated than previously thought.

Rob Gutro | EurekAlert!
Further information:
http://image.gsfc.nasa.gov
http://pwg.gsfc.nasa.gov/istp/polar/
http://www-spof.gsfc.nasa.gov/Education/aurora.htm

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>