Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellite sees ocean plants increase, coasts greening

04.03.2005


A few years ago, NASA researcher Watson Gregg published a study showing that tiny free-floating ocean plants called phytoplankton had declined in abundance globally by 6 percent between the 1980s and 1990s. A new study by Gregg and his co-authors suggests that trend may not be continuing, and new patterns are taking place.



Why is this important? Well, the tiny ocean plants help regulate our atmosphere and the health of our oceans. Phytoplankton produce half of the oxygen generated by plants on Earth. They also can soften the impacts of climate change by absorbing carbon dioxide, a heat-trapping greenhouse gas. In addition, phytoplankton serve as the base of the ocean food chain, so their abundance determines the overall health of ocean ecosystems. Given their importance, it makes sense that scientists would want to closely track trends in phytoplankton numbers and in how they are distributed around the world.

Gregg and his colleagues published their new study in a recent issue of Geophysical Research Letters. The researchers used NASA satellite data from 1998 to 2003 to show that phytoplankton amounts have increased globally by more than 4 percent. These increases have mainly occurred along the coasts. No significant changes were seen in phytoplankton concentrations within the global open oceans, but phytoplankton levels declined in areas near the center of the oceans, the mid-ocean gyres. Mid-ocean gyres are "ocean deserts", which can only support low amounts of phytoplankton. When viewed by satellite, these phytoplankton-deprived regions look deep-blue, while in aquatic regions where plant life thrives, the water appears greener.


"The ocean deserts are getting bluer and the coasts are getting greener," said Gregg, an oceanographer at NASA’s Goddard Space Flight Center (GSFC), Greenbelt, Md. "The study suggests there may be changes occurring in the biology of the oceans, especially in the coast regions."

Phytoplankton amounts have increased by 10.4 percent along global coast regions, where the ocean floor is less than 200 meters (656 feet) deep. Ocean plant life has greened the most in the Patagonian Shelf and the Bering Sea, and along the coasts of the Eastern Pacific Ocean, Southwest Africa, and near Somalia. Both the Patagonian Shelf and the California/Mexican Shelf showed large increases in phytoplankton concentrations of over 60 percent.

Meanwhile, the researchers observed declines in phytoplankton amounts in five mid-ocean gyres over the six-year study period, including the North and South Atlantic, and North and South Pacific oceans, and a possible new gyre region in the North Central Indian ocean. At the same time, for all but the North Atlantic gyre, sea surface temperatures increased in at least one season. "In the mid-ocean gyres, the downward trends in phytoplankton concentrations do appear related to mid-ocean sea surface temperatures," said Gregg.

Phytoplankton growth is largely dependent on amounts of nutrients and light available to the plants. Warmer water temperatures can create distinct layers in the ocean surface, which allows less of the nutrient-rich, colder deeper water to rise up and mix with sunny surface layers where phytoplankton live. Winds churn and mix the ocean water, carrying nutrient-rich waters to the sunny surface layer, so when winds decline mixing declines, and phytoplankton can suffer.

In a number of open ocean regions, increases in phytoplankton levels countered the declines found in the gyres and other areas. For example, a 72 percent increase in phytoplankton abundance occurred in the Barents Sea. The researchers observed a smaller 17 percent increase in phytoplankton amounts in the Western Central Pacific near Indonesia and the Philippines. The waters cooled in the Western Pacific, while wind stresses increased by 26 percent over the study period. The cooling water and increasing winds are consistent with climate conditions that lead to greater mixing of water.

The six full years of data used in this analysis came from NASA’s Sea-viewing Wide Field-of-view Sensor (SeaWiFS), which detects ocean colors. Chlorophyll is the substance or pigment in plants that appears green and captures energy from sunlight. The sunlight, along with carbon dioxide and water, are processed by the phytoplankton to form carbohydrates for building cells. SeaWiFS measures this greenness. While the study refers to the measurement of chlorophyll a concentrations in the ocean, researchers use the measures of chlorophyll a to estimate amounts of phytoplankton.

While declines in phytoplankton abundance in mid-ocean gyres appear related to warming oceans, a number of factors requiring more study to may be contributing to the coastal increases in plant life. "We don’t know the causes of these coastal increases," said Gregg. "The trends could indicate improved health of the ecosystems as a whole, or they could be a sign of nutrient stress." Causes of nutrient stress include land run-off that deposits agricultural fertilizers and other nutrients in the oceans. The run-off can promote large algal blooms that can deplete the water of oxygen.

Gregg and coauthors caution that the length of time the data cover is too short to answer questions about long term trends, but for the time being the phytoplankton declines in the global oceans observed between the 1980s and 1990s appear to have subsided.

Co-authors on the study include Nancy Casey of Science Systems Applications, Inc., who works at NASA GSFC, and Charles McClain, also a researcher at NASA GSFC.

Rob Gutro | EurekAlert!
Further information:
http://www.gsfc.nasa.gov

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>