Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Huge 2004 Stratospheric Ozone Loss Tied to Solar Storms, Arctic Winds

03.03.2005


Nitrogen oxide and nitrogen dioxide gases in the upper stratosphere climbed to their highest levels in at least two decades in spring 2004, scientists report. The increases led to ozone reductions of up to 60 percent, roughly 40 kilometers [25 miles] above Earth’s high northern latitudes, according to Cora Randall of University of Colorado at Boulder and 10 colleagues in Canada, Norway, Sweden, and the United States. Two natural processes were responsible, they say.

"This decline was completely unexpected," Randall said. "The findings point out a critical need to better understand the processes occurring in the ozone layer." Randall, a researcher at the university’s Laboratory for Atmospheric and Space Physics, is lead author of a paper on the subject scheduled for publication 2 March in Geophysical Research Letters. She and her international team studied data from seven different satellites, concluding that both the Sun and stratospheric weather were responsible for the ozone declines.

Winds in the upper part of a massive winter low-pressure system, which confines air over the Arctic region and is known as the polar stratospheric vortex, sped up in February and March 2004 to become the strongest on record, she said. The spinning vortex allowed the nitrogen gases, thought to have formed at least 30 kilometers [20 miles] above the stratosphere as a result of chemical reactions triggered by energetic particles from the Sun, to descend more easily into the stratosphere.



The increases in the two nitrogen gases -- collectively known as nitrogen oxides or NOx -- are important because they are major players in the stratospheric ozone destruction process, said Randall. The team concluded that some of the extra nitrogen oxides was actually formed after huge quantities of energetic particles from the Sun bombarded Earth’s atmosphere during the massive solar storms of October-November 2003.

"No one predicted the dramatic loss of ozone in the upper stratosphere of the Northern Hemisphere in the spring of 2004," she said. "That we can still be surprised illustrates the difficulties in separating atmospheric effects due to natural and human-induced causes. "This study demonstrates that scientists searching for signs of ozone recovery need to factor in the atmospheric effects of energetic particles, something they do not now do."

The 2004 enhancements of nitrogen oxides gases in the upper stratosphere and subsequent ozone losses occurred over the Arctic and the northern areas of North America, Europe, and Asia, said the paper’s authors. Severe ozone losses also can occur during winter and spring in the stratosphere at about 20 kilometers [12 miles] in altitude, driven primarily by very cold temperatures, they said.

Because of seasonal conditions, the researchers are unable to measure the precise contributions of solar storms and stratospheric weather to the nitrogen oxides spike seen in the stratosphere last year. "No observations of upper atmospheric nitrogen gases are available in the polar region in the winter, so the descending nitrogen oxides cannot be traced to its origin," said Randall.

Stratospheric ozone, a form of oxygen, protects life on Earth from the harmful effects of ultraviolet radiation. The ozone layer has thinned markedly in high latitudes of the Northern and Southern Hemispheres in recent decades, primarily due to reactions involving chlorofluorocarbons and other industrial gases. Scientists credit the 1987 Montreal Protocol, an international agreement that is phasing out the production and use of such ozone-destroying compounds, for helping the protective ozone layer to be restored by the middle of this century.

Randall’s co-authors include researchers from the University of Colorado at Boulder; the National Oceanic and Atmospheric Administration, NASA, the Harvard-Smithsonian Center for Astrophysics; Hampton University and GATS Inc; York University in Canada; Chalmers University of Technology in Sweden; and the Norwegian Institute for Air Research. They analyzed data from satellite instruments, including POAM II, POAM III, SAGE II, SAGE III, HALOE, MIPAS and OSIRIS for the study, which was funded by NASA, the European Union Commission, and the European Space Agency.

Harvey Leifert | AGU
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>