Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists discover clockwork motion by ocean floor microplates

24.02.2005


A team of geologists from Duke University and the Woods Hole Oceanographic Institution has discovered a grinding, coordinated ballet of crustal "microplates" unfolding below the equatorial east Pacific Ocean within a construction zone for new seafloor.



The scientists deduced that relatively small sections of the ocean floor there, and perhaps in other similar places, may be slowly rotating like imperfectly meshing cogs in a machine. The unexpected findings provide new insights into the way several ocean ridge segments that border the microplates evolved into their current positions to form part of what is known as a "triple junction," according to the researchers. And these results may be applicable to systems elsewhere, they added. "As often happens in science, what you think you’re going to learn doesn’t always end up being the exciting thing that you learn," said Emily Klein, the Lee Hill Snowdon Professor at Duke’s Nicholas School of the Environment and Earth Sciences, who is the lead author of a report on the findings published in the Thursday, February 24, 2005 issue of the journal Nature.

Other authors include Deborah Smith, Clare Williams and Hans Schouten of the Woods Hole Oceanographic Institution in Massachusetts. The group’s study, begun aboard the San Diego-based research ship R/V Melville, was supported by the National Science Foundation. Klein, whose specialty is geochemistry, said the scientists’ original focus was the chemistry and structure of the Incipient Rift, the smallest and newest of four ocean ridge segments in a region of the ocean floor northwest of the Galapagos Islands. Ocean ridges are linear features on the ocean floor where molten magma originating in the earth’s mantle rises and solidifies to form new ocean crust.


The Incipient Rift and other ridge segments in the area intersect with the East Pacific Rise, part of a globe-circling mid-ocean ridge system and the region’s largest ocean crust producer. All these intersecting ridge segments also form parts of boundaries separating what the study revealed to be subsections of the Galapagos Microplate, which wedges between three other larger plates in the region’s complex ocean floor topography. "The exciting story is about the tectonics and the kinematics of the whole Galapagos microplate, which before our cruise was little understood," Klein said in an interview. Tectonics are the crustal deformation of plates; kinematics describe their motion over the mantle. "The Galapagos microplate shares a complex plate boundary configuration with the surrounding Cocos, Nazca and Pacific plates. We learned a lot on this cruise and have many new questions to pursue," Smith said of the study.

At the outset, the scientists grew puzzled when they began analyzing data from sensitive sonar beams they were using to map the extremely jumbled terrain of previously uncharted geological features along the Incipient Rift. A previous study by other researchers led them to expect that rift would grow consistently wider, in the manner of a ship’s wake, as they mapped increasingly eastward from the East Pacific Rise. Instead, their sonar imaging showed the rift becoming narrower and deeper as their distance from the East Pacific Rise grew larger. Narrowing at both ends and widest in the middle, the trough thus assumed the overall shape of an elongated diamond -- which they termed a "lozenge." That finding implied that more complex dynamics are at work there, said Klein.

Meanwhile, underwater photography and rock magnetic measurements by the group suggested that molten lava was periodically erupting within the area where the Incipient Rift re-narrows. Such eruptions would provide further evidence for "active rifting and continuing reorganization of the microplate’s boundary," Klein said. Using those collective observations, Smith, Schouten and Williams of Woods Hole applied their own expertise in modeling to deduce the likely present, past and future motion of the Incipient Rift and the Galapagos microplate it borders. In the process, the scientists found that "what was previously considered one coherent microplate must, in fact, form two separate microplates," according to the Nature report. They also deduced that those separate Galapagos microplates should be "rotating," and turning "in opposite directions."

Duke’s Klein and the Woods Hole modelers then went on to infer the kinematics of these contiguous microplates. Both microplates appeared to be turning -- the northern one counter-clockwise and the southern one clockwise -- in a coordinated way, reported the Nature report’s authors, who located likely rotating points on each of the three ocean ridge segments. Eventually, further rifting may force the Incipient Rift to cut further from the East Pacific Rise in a direction that pierces the walls of an adjoining rift. If that happens, the "driving torque" will cease, "and the microplates will stop rotating," the Nature report authors predicted. "It’s like ball bearings moving past each other," Klein said. "This finding has huge implications for how complex plate boundaries interact and evolve and change their orientations and kinematics through time."

The key is "edge driven" action caused by the microplate rotations, according to the paper. But what drives the rotations themselves remains "truly an unanswered question," Klein acknowledged.

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>