Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings by Scripps Scientists Cast New Light on Undersea Volcanoes

11.02.2005


Study in Science may help change the broad understanding of how they are formed


Hawaii-Emperor chain, the conventional theory holds.


A map of Beru Atoll, part of the Gilbert Ridge seamount chain in the Pacific Ocean



Researchers at Scripps Institution of Oceanography at the University of California, San Diego, have produced new findings that may help alter commonly held beliefs about how chains of undersea mountains formed by volcanoes, or "seamounts," are created. Such mountains can rise thousands of feet off the ocean floor in chains that span thousands of miles across the ocean.

Since the mid-20th century, the belief that the earth’s surface is covered by large, shifting plates--a concept known as plate tectonics--has shaped conventional thinking on how seamount chains develop. Textbooks have taught students that seamount patterns are shaped by changes in the direction and motion of the plates. As a plate moves, stationary "hot spots" below the plate produce magma that forms a series of volcanoes in the direction of the plate motion.


Now, Anthony Koppers and Hubert Staudigel of Scripps have published a study that counters the idea that hot spots exist in fixed positions. The paper in the Feb. 11 issue of Science shows that hot spot chains can change direction as a result of processes unrelated to plate motion. The new research adds further to current scientific debates on hot spots and provides information for a better understanding of the dynamics of the earth’s interior.

To investigate this phenomenon, Staudigel led a research cruise in 1999 aboard the Scripps research vessel Melville to the Pacific Ocean’s Gilbert Ridge and Tokelau Seamounts near the international date line, a few hundred miles north of American Samoa and just south of the Marshall Islands.

Gilbert and Tokelau are the only seamount trails in the Pacific that bend in sharp, 60-degree angles--comparable in appearance to hockey sticks--similar to the bending pattern of the Hawaii-Emperor seamount chain (which includes the Hawaiian Islands).

Assuming that these three chains were created by fixed hot spots, the bends in the Gilbert Ridge and Tokelau Seamounts should have been created at roughly the same time period as the bend in the Hawaii-Emperor chain, the conventional theory holds.

Koppers, Staudigel and a team of student researchers aboard Melville spent six weeks exploring the ocean floor at Gilbert and Tokelau. They used deep-sea dredges to collect volcanic rock samples from the area.

For the next several years, Koppers used laboratory instruments to analyze the composition of the rock samples and calculate their ages. "It was quite a surprise that we found the Gilbert and Tokelau seamount bends to have completely different ages than we expected," said Koppers, a researcher at the Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics at Scripps. "We certainly didn’t expect that they were 10 and 20 million years older than previously thought."

Instead of forming 47 million years ago, as did the Hawaiian-Emperor bend, the Gilbert chain was found to be 67 million years old and the Tokelau 57 million years old. "I think this really hammers it in that the origin of the alignment of these seamount chains may be much more complicated than we previously believed, or the alignment may not have anything to do with plate motion changes," said Staudigel.

Although they do not have positive proof as yet, Koppers and Staudigel speculate that local stretching of the plate may allow magma to rise to the surface or that hot spots themselves might move. Together with plate motion, these alternate processes may be responsible for the resulting pattern of seamounts.

Koppers and Staudigel will go to sea again next year to seek additional clues to the hot spot and seamount mysteries. "Seamount trails are thousands of kilometers long and even if we are out collecting for several weeks, we still only cover a limited area," said Koppers. "One of the things holding us back in developing a new theory is that the oceans are humongous and our database is currently very small we are trying to understand a very big concept."

The study was funded by the National Science Foundation.

Scripps Institution of Oceanography, at the University of California, San Diego, is one of the oldest, largest, and most important centers for global science research and graduate training in the world. The National Research Council has ranked Scripps first in faculty quality among oceanography programs nationwide. The scientific scope of the institution has grown since its founding in 1903 to include biological, physical, chemical, geological, geophysical, and atmospheric studies of the earth as a system. Hundreds of research programs covering a wide range of scientific areas are under way today in 65 countries. The institution has a staff of about 1,300, and annual expenditures of approximately $140 million from federal, state, and private sources. Scripps operates one of the largest U.S. academic fleets with four oceanographic research ships and one research platform for worldwide exploration.

Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>