Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphic video simulation of Indian Ocean tsunami

14.01.2005


Copyright © Cornell University


Cornell University researchers have created a video simulation of the deadly Dec. 26 Indian Ocean tsunami that shows in graphic detail how the massive wave system spread outward from the epicenter of an undersea earthquake northwest of Sumatra, Indonesia.

The simulation makes it clear how the tsunami struck the coastlines of Indonesia, Thailand, Sri Lanka and India with such devastating force, then continued as far as East Africa.

The video, about 7 MB, can be seen online at http://www.news.cornell.edu/releases/Jan05/tsunamiVid320.html .



A 640x480 Quicktime version, about 43 MB, is available at http://www.news.cornell.edu/releases/Jan05/tsunamiVid640.html . (This will take several minutes to load even on a fast Internet connection.)

The video compresses 10 hours and 30 minutes in the life of the tidal wave into one minute, showing in contrasting colors the advancing high water and the trough behind it, as well as the receding waters observed along coastlines near the epicenter before the wave struck. It shows high water in red and low in blue. The more intense the color, the greater the displacement from sea level. A clock in the animation starts at the moment of the Sumatra earthquake.

The computer simulation was created using a numerical model called the Cornell Multigrid Coupled Tsunami model, or COMCOT, developed by Philip Liu, Cornell professor of civil and environmental engineering, and graduate student Xiaoming Wang. The model was originally created by Japanese scientists, further developed by Liu and several of his students, and most recently refined and updated by Wang. Wang created the final video with Tso-Ren Wu, a Cornell post-doctoral researcher.

Liu, who helped develop the Pacific Ocean tsunami warning system, is currently leading a delegation of scientists studying the effects of the tsunami in Sri Lanka, and will report findings at a symposium there Jan. 15. The computer model assumes that the up-and-down motion of the sea floor caused by the earthquake occurred in just a few seconds, so the sea water above was deformed in the same way as the earth below, since there was no time for the water to get out of the way. Tsunamis are created when water is lifted by energy generated by earthquakes and then falls back.

Based on earthquake data and information about the topography of the sea floor provided by the U.S. National Oceanic and Atmospheric Administration (NOAA), the COMCOT model calculates the elevation of the sea surface at a series of grid points on a map of the area over a period of time. The video is generated from this information. How closely the simulation corresponds to what actually happened will not be determined until data is collected in the field, Wang said.

Accurate seismic data generally is available only after an event is over. With the future development of seismic technology, a more accurate and rapid estimation of seismic data might be provided, he said. It then might be possible to use such simulations to predict tsunami behavior immediately after an earthquake is detected.

Bill Steele | EurekAlert!
Further information:
http://www.cornell.edu
http://www.news.cornell.edu/releases/Jan05/tsunamiVid320.html
http://www.news.cornell.edu/releases/Jan05/tsunamiVid640.html

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>