Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CALIPSO monitors pulse of Soufriere Hills volcano

17.12.2004


Photo of the growing soufriere Hills Volcano lava dome taken 31 May 2003
Click here for a high resolution photograph.


A unique monitoring system in place on the island of Montserrat can record the everyday changes beneath the Soufriere Hills volcano and throughout the island, according to an international team of volcanologists.

The CALIPSO project (Caribbean Andesite Lava Island Precision Seismo-geodetic Observatory) is the first volcano monitoring system of its type installed at an andesitic volcano. Andesite volcanoes are the most important volcano type making up the Earth’s Ring of Fire, and have caused more fatalities than any other type of volcano. Intended to improve the understanding of how these volcanos erupt, the system investigates the dynamics of the entire magma system below the island.

"We had the system working just in time for the largest lava dome collapse ever seen anywhere," says Dr. Barry Voight, professor of geosciences at Penn State. "Montserrat is the only place where such an array of monitoring tools, including strain meters, surround the volcano," he told attendees at the fall meeting of the American Geophysical Conference today (Dec. 16) in San Francisco.



The CALIPSO system features four bore holes, each 600-foot deep and 4.5 inches in diameter through most of its depth. The width of the last 30 feet is a bit narrower to accommodate the equipment, which must be bonded to the surrounding rock. Each bore hole houses a super-sensitive strain meter, a seismometer and a tiltmeter and a geographic positioning system sits above on the ground surface.

"The ground is a 100-times quieter down there than at the surface," says Voight. "We can record smaller events and deeper events than would be possible on the noisy ground surface, and we can record measurements continuously all day long."

By comparing the measurements with a computer model of the volcano, the researchers can begin to understand what is happening beneath the surface. The active magma reservoir system may extend to a depth of 10 miles, with its top about 3.5 miles deep. The researchers hope they will be able to measure the position, size and shape of the existing magma reservoir, the quantity of new magma inflow and the physical characteristics of the magma. They also hope to learn more about the earthquake mechanics associated with the dynamic volcanic system.

The institutions involved in the CALIPSO project include Penn State, University of Arkansas, Carnegie Institution of Washington, Duke University, Bristol University (UK), Leeds University (UK), Arizona State University and the Montserrat Volcano Observatory.

Andesitic volcanoes occur throughout the world in such places as Japan, Indonesia, the Andes, the Aleutian Islands and the North American Cascades. They often form lava domes when active. These lava domes can fail, causing either lava block avalanches or violent explosive hurricanes of hot ash and gas that can travel many miles and destroy everything in their paths. These explosive releases cause the most damage to life and property.

The Soufriere Hills Volcano has erupted on and off since July 1995. The latest dome collapse occurred in 2003 and explosions occurred in March and April 2004. Since then the surface activity of the volcano has quieted down, but activity at depth continues, as indicated by the monitoring system. While the volcano has only been active for the past nine years, the island shows a long history of volcanic activity extending back thousands of years.

Now that the CALIPSO equipment is in place, the researchers plan an island-wide experiment using 100 to 150 additional seismographs. From the data collected, the scientists will create a tomographic image of the island similar to PET scans done by hospitals. The scan will show the current and past magma chambers and provide an underground, three-dimensional map of the island and the volcanic system.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

nachricht Artificial Glaciers in Response to Climate Change?
10.08.2018 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>