Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exploring Ocean Life and Color on the Internet

15.12.2004


A new NASA Internet tool called "Giovanni" allows high school and college students and researchers to access and analyze satellite-derived ocean color data. Ocean color data provides students with information about ocean biology by looking at phytoplankton through changes in the color of the ocean surface.



"Ocean color" refers primarily to the measurement of the green pigment called chlorophyll, which is contained in phytoplankton. Phytoplankton are free-floating plants that are the foundation of the ocean’s food chain.

Giovanni stands for the "Goddard Earth Sciences Data and Information Services Center (GES DISC) Online Visualization and Analysis Infrastructure." NASA recently released three Giovanni tutorials demonstrating how students can conduct research with ocean color data. Use of such technical information was previously only possible for experienced scientists with advanced computer systems.


Scientists and software developers at NASA’s Goddard Space Flight Center (GSFC), Greenbelt, Md., designed Giovanni. The initial release of this Web tool allows users to see ocean color data from the SeaWiFS satellite. Data from other ocean color missions will be added, including data from NASA’s Aqua satellite. Giovanni development is part of the Ocean Color Time-Series Project, headed by Dr. Watson Gregg, a NASA GSFC oceanographer.

Dr. James Acker of the GES DISC Oceans Data Team created three tutorials geared for high school and college level students. These tutorials help students identify research questions that can be answered with ocean color data.

"In creating these tutorials, I discovered features in the data that were a complete surprise," Acker said. "The tutorials show how to use Giovanni, and how students can use it to make new discoveries, potentially contributing to ocean science."

In the first tutorial, Dr. Acker looked at the chlorophyll patterns in the Gulf of Panama to see if they were influenced by El Nino/La Nina events. The Gulf of Panama has a strong seasonal pattern caused by strong winds that blow through the Panama Canal Zone in winter. The winds mix nutrients from deeper waters to the surface, and the nutrients promote phytoplankton growth. The strong 1997-1998 El Nino reduced the productivity, or how much phytoplankton grow in this region, as expected.

In the summer of 2001, however, there were short bursts of higher productivity not seen in other years. This unusual pattern may have been an early indicator of how the Gulf of Panama changed before the moderate El Nino event that occurred in 2002-2003.

The second tutorial investigated seasonal patterns of productivity in the Red Sea. There were two seasonal patterns in the Red Sea, one in the north and another in the south. Though these patterns are familiar to oceanographers, Giovanni provided another surprise. "I saw a very small area of relatively high chlorophyll concentrations near the Egyptian coast," Acker said. "At first it looked like a small river was entering the Red Sea. But there aren’t any rivers in this part of the desert." Further investigation indicated that this area was associated with a large coral reef complex on the Red Sea coast. A third tutorial examines the California coast near Monterey Bay, and discusses the influence of clouds on the data.

In the past, researchers had to download data files and analyze them on their own computing systems, a difficult and time-consuming process. Giovanni is one of the first demonstrations of new technology that will be improved in the future, making it much easier to use the data, including the multi-decade data sets that the Ocean Color Time-Series Project will create.

Cynthia O’Carroll | EurekAlert!
Further information:
http://www.nasa.gov/vision/earth/everydaylife/giovanni.html

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>