Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover direct link between agricultural runoff and massive algal blooms in the sea

09.12.2004


Scientists have found the first direct evidence linking large-scale coastal farming to massive blooms of marine algae that are potentially harmful to ocean life and fisheries.


A NASA satellite image of a large algal bloom in the Sea of Cortez



Researchers from Stanford University’s School of Earth Sciences made the discovery by analyzing satellite images of Mexico’s Sea of Cortez, also known as the Gulf of California-a narrow, 700-mile-long stretch of the Pacific Ocean that separates the Mexican mainland from the Baja California Peninsula. Immortalized in the 1941 book Sea of Cortez, by writer John Steinbeck and marine biologist Edward Ricketts, the region remains a hotspot of marine biodiversity and one of Mexico’s most important commercial fishing centers.

The results of the Stanford study will be presented at the annual meeting of the American Geophysical Union (AGU) in San Francisco on Dec. 13.


Algal blooms

Algal blooms occur naturally when cold-water upwellings bring from the seafloor to the surface nutrients that stimulate the rapid reproduction and growth of microscopic algae, also known as phytoplankton. These events often benefit marine ecosystems by generating tons of algae that are consumed by larger organisms.

But several phytoplankton species produce harmful blooms, known as red or brown tides, which release toxins in the water that can poison mollusks and fish. Excessively large blooms can also overwhelm a marine ecosystem by creating oxygen-depleted "dead zones" in the ocean. Scientists have long suspected that many harmful blooms are fueled by fertilizer runoff from farming operations, which in many regions pour tons of excess nitrogen and other nutrients into rivers that eventually flow into coastal waters. However, some agricultural industry groups contend that there is not enough evidence to link farm runoff to red tides or dead zones.

Satellite imagery

To assess the impact of agriculture on marine algae, Stanford scientists turned their attention to one of Mexico’s most productive coastal farming regions-the Yaqui River Valley, which drains into the Sea of Cortez.

"The Yaqui Valley agricultural area is 556,000 acres [225,000 hectares] of irrigated wheat," said Pamela A. Matson, the dean of Stanford’s School of Earth Sciences and co-author of the AGU study. "The entire valley is irrigated and fertilized in very short windows of time during a six-month cycle. The excess water from irrigation runs off through streams and channels into the estuaries, and then out to sea."

Matson and her colleagues wondered if each fertilization and irrigation event would trigger a noticeable phytoplankton bloom near the mouth of the Yaqui River, which is located on the mainland side of the Sea of Cortez. To find out, the researchers analyzed a series of images from an orbiting NASA satellite called SeaWiFS, which is equipped with special light-sensitive instruments that can detect phytoplankton floating near the surface of the sea. "These instruments measure the level of greenness in the water," explained Kevin R. Arrigo, an associate professor of geophysics at Stanford and co-author of the AGU paper. "The greener the water, the more phytoplankton there are."

Dramatic results

Stanford doctoral candidate Mike Beman carefully analyzed dozens of SeaWiFS images taken over the Sea of Cortez from 1998 through 2002. The results were dramatic. "I looked at five years of satellite data," said Beman, lead author of the study. "There were roughly four irrigation events per year, and right after each one, you’d see a bloom appear within a matter of days."

Each bloom was enormous, he said, covering from 19 to 223 square miles (50 to 577 square kilometers) of the Sea of Cortez and lasting several days. "Sometimes eddies actually pulled the plumes across the gulf, from the mainland side all the way to the Baja Peninsula," Beman added. "Mike found that immediately following each one-week window in which much of the valley was irrigated, there was a response in the ocean off the coast of the Yaqui Valley," Matson explained.

"We were quite surprised," Arrigo added, noting that the AGU paper marks the first time that scientists have documented a "one-to-one correspondence between an irrigation event and a massive algal bloom."

Red tides and dead zones

According to the researchers, artificially induced algal blooms could have major impacts on recreational and commercial fishing, major industries in the Sea of Cortez. Red tides, for example, can cause outbreaks of life-threatening diseases, such as paralytic shellfish poisoning, which can shut down mussel and clam harvesting for long periods of time.

Another concern is hypoxia, or oxygen depletion, which is caused by excessive algae growth. As the algal mass sinks, it is consumed by bacteria, which use up most of the oxygen in the water as they multiply. The result is an oxygen-depleted dead zone at the bottom of the sea where few creatures can survive. A massive dead zone appears every summer in the Gulf of Mexico off the coast of Louisiana and Texas. Scientists believe that agricultural runoff from the Mississippi River plays a pivotal role in creating this annual dead zone, which measured 8,500 square miles (22,000 square kilometers) in 2002-an area bigger than the state of Massachusetts.

"In the Sea of Cortez, there’s the possibility that hypoxia could occur at a local scale, which could be devastating to the shrimp and shellfish industries," Matson said. "Shrimp fisheries are very important economically, and they’re already under a lot of stress from overfishing and aquaculture. It is possible that agricultural runoff could cause additional stress if it does lead to toxic blooms or hypoxia." She and her colleagues plan to conduct follow-up studies to assess the ecological impact of Yaqui Valley runoff events.

"The availability of high-resolution satellite data has opened up a whole new opportunity to look at the importance of what’s going on on land in the sea," Matson added. "This study shows that you have to pay attention to the land-sea connections."

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>