Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method to measure ancient land elevation developed by Field Museum scientist

29.11.2004


Holy Grail of geology found: Measuring elevation over geological eras



A Field Museum scientist has developed a novel way to determine land elevation as continents moved around the Earth through geological ages. Knowing how high mountains and plateaus were in the past will help scientists to study how our climate system evolved. "Understanding the past elevation of land surfaces, also known as paleoelevation, has been one of geology’s Holy Grails," said Jennifer McElwain, PhD, Associate Curator of Paleobotany at Chicago’s Field Museum and sole author of the research to be published in Geology’s December issue. "This is the first paleobotanical method that works globally and is independent of long-term climate change.

"The new method will help us to understand the rate at which some of the Earth’s most important mountains have uplifted," she added. "It will also show how the process of mountain building influenced climatic patterns as well as plant and animal evolution."


The new method of paleoelevation involves counting the stomata on leaves of plants going back as far as 65 million years ago. Stomata are minute openings on the surface of leaves through which plants absorb gases, including carbon dioxide, which plants need for photosynthesis. Anyone who has climbed a mountain knows that the air gets "thinner" as you climb higher. As with oxygen, carbon dioxide is less concentrated at higher elevations. Therefore, the higher the elevation, the more stomata per square inch of leaf surface a plant would need to survive. By simply counting the number of fossil stomata, Dr. McElwain can estimate how much carbon dioxide was in the air when the fossil leaf developed. From that, she can estimate the elevation at which the fossil plant once lived.

Dr. McElwain used historical and modern collections of California Black Oak (Quercus kelloggii) leaves for her study because the California Black Oak grows at an unusually wide range of elevations from 200 to 8,000 feet (60 to 2,440 meters). The historical leaves were collected by botanists in the 1930s and stored within herbarium collections of the Field Museum and the University of California, Berkeley.

The research was conducted with financial support from the National Science Foundation.

This new method of estimating land elevation has an average error of about 980 feet (300 meters) – but as low as 330 feet (100 meters). Such an error rate is much lower than the error rate of existing paleoelevation methods, all of which have significant limitations. This method can be used for any area where suitable plant specimens can be found.

High mountains and plateaus can act as important barriers to plant and animal migration and dispersal resulting in isolation of plant and animal populations on opposite sides of mountain chains. Therefore, knowing exactly when in the geological past the mountains of today’s world reached their current elevations is relevant to our understanding of plant and animal evolution since isolation is an important mechanism in the formation of species.

In addition, high mountains and large plateaus (such as those in Tibet and Colorado today) have always had a big influence on climate by altering patterns of atmospheric circulation. Because this new method is independent of variations in climate, it will allow scientists to identify the impact of elevation on global climate patterns and factor elevation into the study of global climate change.

This research also highlights the importance of museum collections, Dr. McElwain noted. "You never know what information is locked up in specimens or artifacts kept at a natural history museum like ours until someone develops a new method, tool or technology to draw out those secrets."

Greg Borzo | EurekAlert!
Further information:
http://www.fieldmuseum.org

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>