Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seismic Shaking Erased Small Impact Craters On Asteroid Eros

26.11.2004


University of Arizona scientists have discovered why Eros, the largest near-Earth asteroid, has so few small craters.

When the Near Earth Asteroid Rendezvous (NEAR) mission orbited Eros from February 2000 to February 2001, it revealed an asteroid covered with regolith -- a loose layer of rocks, gravel and dust -- and embedded with numerous large boulders. The spacecraft also found places where the regolith apparently had slumped, or flowed downhill, exposing fresh surface underneath.

But what NEAR didn’t find were the many small craters that scientists expected would pock Eros’ landscape. "Either the craters were being erased by something or there are fewer small asteroids than we thought," James E. Richardson Jr. of UA’s planetary sciences department said.

Richardson concludes from modeling studies that seismic shaking has obliterated about 90 percent of the asteroid’s small impact craters, those less than 100 meters in diameter, or roughly the length of a football field. The seismic vibrations result when Eros collides with space debris.

Richardson, Regents’ Professor H. Jay Melosh and Professor Richard Greenberg, all with UA’s Lunar and Planetary Laboratory, report the analysis in the Nov. 26 issue of Science. "Eros is only about the size of Lake Tahoe -- 20 miles (33 kilometers) long by 8 miles (13 kilometers) wide," Richardson said. "So it has a very small volume and a very low gravity. When a one-to-two-meter or larger object hits Eros, the impact will set off global seismic vibrations. Our analysis shows how these vibrations easily destabilize regolith overlaying the surface."

A rock-and-dust layer creeps, rather than crashes, down shaking slopes because of Eros’ weak gravity. The regolith not only slides down horizontally, but also is launched ballistically from the surface and ’hops’ downslope. Very slowly, over time, impact craters fill up and disappear, Richardson said.

If Eros were still in the main asteroid belt between Mars and Jupiter, a 200-meter crater would fill in about 30 million years. Because Eros is now outside the asteroid belt, that process takes a thousand times longer, he added.

Richardson’s research results match the NEAR spacecraft evidence. Instead of the expected 400 craters as small as 20 meters (about 70 feet) per square kilometer (three-fifths mile) on Eros’ surface, there are on average only about 40 such craters.

The modeling analysis also validates what scientists suspect of Eros’ internal structure. "The NEAR mission showed Eros to most likely be a fractured monolith, a body that used to be one competent piece of material," Richardson said. "But Eros has been fractured throughout by large impacts and is held together primarily by gravity. The evidence is seen in a series of grooves and ridges that run across the asteroid’s surface both globally and regionally."

Large impacts fracture Eros to its core, but many smaller impacts fracture only the upper surface. This gradient of big fractures deep inside and numerous small fractures near the surface is analogous to fractures in the upper lunar crust, Richardson said. "And we understand the lunar crust -- we’ve been there. We’ve put seismometers on the moon. We understand how seismic energy propagates through this kind of structure."

The UA scientists’ analysis of how impact-induced seismic shaking has modified Eros’ surface has a couple of other important implications. "If we eventually do send spacecraft to mine resources among the near-Earth asteroids or to deflect an asteroid from a potential collision with the Earth, knowing internal asteroid structure will help address some of the strategies we’ll need to use. In the nearer future, sample return missions will encounter successively less porous, more cohesive regolith as they dig farther down into asteroids like Eros, which has been compacted by seismic shaking," Richardson noted.

"And it also tells us about the small asteroid environment that we’ll encounter when we do send a spacecraft out into the main asteroid belt, where Eros spent most of its lifetime. We know the small asteroids -- those between the size of a beachball and a football stadium -- are out there. It’s just that their ’signature’ on asteroids such as Eros is being erased," Richardson said.

This finding is important because the cratering record on large asteroids provides direct evidence for the size and population of small main-belt asteroids. Earth-based telescopic surveys have catalogued few main-belt asteroids that small. So scientists have to base population estimates for these objects primarily on visible cratering records and asteroid collisional history modeling, Richardson said.

Lori Stiles | University of Arizona
Further information:
http://www.arizona.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>