Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Riders on the storm

19.11.2004


Drifting buoys & floats weather hurricanes for better storm prediction



While some are still cleaning up from the series of hurricanes that plowed through the Caribbean and southern United States this season, scientists supported by the Office of Naval Research are busily cleaning up valuable data collected during the storms. The rapid-fire hurricanes barely gave researchers time to rest between flights that took them into the hearts of Hurricanes Frances, Ivan, and Jeanne. As part of a project called CBLAST, for Coupled Boundary Layer/Air-Sea Transfer, researchers air-dropped specially designed instruments into the paths of the hurricanes--and into the hurricanes themselves.

"This season has seen a breakthrough in hurricane and oceanographic research," said ONR program manager Dr. Carl Friehe. "Real-time data sent back by the drifters and floats have created great interest among oceanographers, meteorologists, and hurricane forecasters." Project CBLAST-Hurricane focuses on the energy exchanges between the ocean and atmosphere during a hurricane, and how those interactions affect a storm’s intensity (a separate CBLAST component studies low-wind interactions). By better understanding these energy exchanges, scientists can develop better models to predict a hurricane’s development. A hurricane’s intensity determines the size of the storm surge of water that precedes it--which can pose a significant threat to ships in port.


New instruments that can measure the ocean water’s temperature, salt content, and velocity--before, during, and after a hurricane--are providing a unique view of the conditions that affect a storm’s intensity. While satellites can provide ocean temperature data, they only monitor the "skin" or surface of the ocean down to just 1/8th of an inch. To reach into lower depths, ONR has sponsored the development of new ocean probes by Dr. Eric D’Asaro and Dr. Tom Sanford of the University of Washington Applied Physics Laboratory (Seattle), and Dr. Peter Niiler and Dr. Eric Terrill of Scripps Institution of Oceanography (La Jolla, Ca).

The data collected on water conditions over the course of a hurricane are crucial to forecast modeling because "the ocean is the gasoline for the hurricane’s engine," explained ONR’s Friehe. During the summer and fall, the sun warms the top hundred meters or so of the ocean. Hurricanes only form over these warm ocean regions, where water easily evaporates and is picked up by swirling weather patterns. "In order to build a model that can predict a storm’s development, we need to know exactly how much energy is in the water, as well as how it is distributed by depth and location between Africa and the Caribbean," he said.

The floats from the UW Applied Physics Lab and Scripps are programmed to bob up and down through the upper 200 meters (656 ft) of the ocean, measuring the water’s temperature, salinity, dissolved gases, and velocity. They also monitor underwater sounds as part of a study to develop methods of measuring hurricane force winds and rainfall. The floats from the Applied Physics Lab are deployed in a line perpendicular to a hurricane’s path, so that one is centered on the eye, another is about 50 km (27 nautical miles) to the north of the eye, and a third 100 km (54 nm) to the north. Each time the instruments reach the water’s surface, they transmit data back to scientists using satellite communications.

Drifters from the Scripps team remain on the ocean’s surface, floating like bottles with a message that’s constantly updated as their instruments measure air pressure, wind speed and direction, and sea surface temperature. They can collect data for as long as their batteries continue to function (up to several months) or they can be picked up by passing ships for reuse and downloading of more detailed information than they are able to transmit. The drifters and floats were dropped into the paths of this season’s hurricanes by the U.S. Air Force Reserve 53rd Weather Reconnaissance Squadron (Keesler AFB, Miss.) from two C130J Hercules aircraft. The probes parachuted into the ocean and automatically began taking measurements. They returned time series of ocean profiles that documented the upwelling and mixing caused by the hurricanes. Several of the floats and drift buoys obtained an unprecedented second set of hurricane observations as Hurricane Jeanne followed closely on the path of Frances.

While the drifters and floats weathered the storms from sea level and below, other CBLAST instruments--and researchers--flew through Hurricane Jeanne in two National Oceanic and Atmospheric Administration (NOAA) WP-3D aircraft. From various altitudes throughout the storms, and with the help of fixed and deployed instruments, they collected data on air temperature and pressure, wind speed and direction, and precipitation. The combination of atmospheric and ocean science, technology (GPS, cell phones, miniature computers, etc.), deployment via aircraft, and the need for better hurricane forecasting have all come together in 2004 to mark a sea change in hurricane research, according to Friehe.

NOAA provides project management for CBLAST, as well as researchers, aircraft, flight crews, and other support through its Hurricane Research Division, Aircraft Operations Center, and Office of Oceanic and Atmospheric Research. Researchers from the University of Miami, Rosenstiel School; University of Washington Applied Physics Lab; Scripps Institution of Oceanography; Massachusetts Institute of Technology; and the University of Massachusetts Microwave Remote Sensing Laboratory also participated. The 5-year (FY01-FY05) funding amount for CBLAST Hurricane is: $5.3 M from ONR and $0.7 M from NOAA’s U.S. Weather Research Program (USWRP).

Jennifer Huergo | EurekAlert!
Further information:
http://www.onr.navy.mil

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

NASA keeps watch over space explosions

16.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>