Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Did death-dealing cyanobacteria cause the mass deaths of Messel?

17.11.2004


In 1875 the remains of a prehistoric crocodile were found in the brown coal mine at Messel near Darmstadt; since then a large number of well preserved fossils have also been discovered. Palaeontologists have long puzzled over what could have been the reason for this annihilation of so many creatures. In the latest issue of the Paläontologische Zeitschrift (‘Journal of Palaeontology’) researchers from the University of Bonn have put forward a new theory: the cause of the deaths of these animals may have been poisoning by cyanobacteria.



The fossil site of Messel, near Darmstadt (central Germany) is a world heritage site; it is famous throughout the world for the fossils of animals and plants from a tropical landscape 47 million years ago, all of them excellently preserved. Nowhere else have so many bats and birds been found in lake deposits. Among the mammals even the contents of the stomach are usually preserved. But how did these animals die? The well-filled stomachs are not exactly an indicator of disease or fatal debility. Until recently the cause of death was assumed to be, inter alia, gases of volcanic origin which may have collected over the lake. This might explain why the animals suffocated. But such clouds of gas – if they indeed existed – must have dispersed rapidly, given the size of the lake. It is still a moot point whether, after hundreds of thousands of years, gas was still escaping from the volcanic subsoil which formed the extinct volcanic crater lake of Messel.

The University of Bonn palaeontologists on Professor Wighart von Koenigswald’s team have proposed a new theory in the latest issue of the Paläontologische Zeitschrift which sheds light on the possible cause of death. While examining the fossils the researchers became aware that the deaths must have occurred at the same time of year in different years. The five pregnant mares which were found at completely different levels in the oil shale at Messel all died at the same time of year, as the foetuses were at the same stage of development. Among the tortoises there were also five pairs which died during copulation, i.e. during the breeding season.


One more piece of the puzzle was provided when the Bonn lecturer Dr. Andreas Braun noticed that there are lime deposits in the sedimentary structures of Messel. A very similar structure occurs in lake deposits which Professor von Koenigswald’s doctoral student Thekla Pfeiffer discovered in Neumark-Nord. In deposits which were about 200,000 years old she was able to detect traces of the highly toxic microcystine, a poison which is produced by cyanobacteria. The researchers assume that the sedimentary structures in Messel are also due to these microbes, also known as ‘blue-green algae’. The animals may therefore have died from microcystine poisoning due to the seasonal algal bloom caused by deadly cyanobacteria.

From Canada we know that during algal bloom cyanobacteria cause toxic foam to collect in the surface water. Anything that drinks this water collapses almost immediately. This is true of both land animals and birds. Observations have shown that even the tiny quantities of water drunk by bats when flying low over the water can be fatal. Many aspects of the fossil finds of Messel which were not previously understood can be explained by this theory of a seasonal growth of highly toxic cyanobacteria which was repeated year after year. The theory still awaits further confirmation. One difficulty, however, is already apparent: it will be very difficult to provide direct evidence of toxic agents after 47 million years.

Prof. Wighart von Koenigswald | alfa
Further information:
http://www.uni-bonn.de

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>