Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Unlock Nature’s Secret Preserver - Fool’s Gold

19.10.2004


Scientists have made a rare discovery from over 500 million years ago that provides new information on how a record of the past was perfectly preserved by nature.



Geologists at the University of Leicester have found that pyrite - or fool’s gold - replaced soft tissues, thereby preserving animals to their smallest details for posterity.

Dr Sarah Gabbott and colleagues, of the University of Leicester Department of Geology, found creatures with the very hairs on their legs preserved and, in some cases, the contents of their last meals could be identified in the guts of animals. Details of how pyrite preserves these ancient creatures were published this month in Geology, published by the Geological Society of America.


Dr Gabbott said: "In the Yunnan Province, China, the Chengjiang sediments have contained within them unique and exquisitely preserved fossils. Although these animal remains are over 500 million years old nearly every detail of their anatomy can be studied, from the spiny proboscis of ancient worms to the hairs on the legs of primitive arthropods. These animals lived in the Cambrian sea and record what life was like just after the Cambrian ’evolutionary explosion’ - a crucial time in the history of life on Earth.

"Until now the processes that acted to preserve these animals have been poorly understood. Our study shows that a common mineral, pyrite (often known as fool’s gold) rapidly precipitated onto the rapidly decaying carcasses of the Chengjiang animals and faithfully captured their morphology.

"If pyrite had not replaced these tissues all of the fossils simply wouldn’t exist as many are entirely made from easily decayed soft tissues. If we didn’t have these animals preserved we would have no idea of the weird and wonderful animals of the Cambrian seas, more than 500 million years ago.

"Even more remarkable is that the type of soft tissue may have influenced the shape of the mineralizing pyrite crystals. Raspberry shaped pyrites, termed framboids, replaced easily decayed animals and tissues, whereas, perfect octahedral and cubic shapes reflect animals and tissues that were tougher and so decayed more slowly."

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>