Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First-of-its-kind experiment on San Andreas

08.09.2004


Quake researchers ’look’ deep inside fault with cold war-era gravity sensor



Using classified technology developed by the military during the Cold War, a team of geoscientists led by Rice University’s Manik Talwani is conducting a first-of-its-kind experiment on California’s famed San Andreas fault this week. The researchers will gather data that could give scientists a much clearer picture of the fault’s "gouge zone," a region 2-3 kilometers beneath the earth consisting of gravel-sized rock that is created when continental plates grind against one another.

Little data has been collected on the deep underlying structures of fault lines because it’s very expensive to drill deep wells and install instruments that far below ground. This week’s experiments take advantage of extremely sensitive gravity instruments that will be flown over the site in an airplane. By taking to the air, Talwani and his colleagues will be able to cover a 100-square kilometer region of the San Andreas near the town of Parkfield, in central California.


"If this technique works, it will open the door for geoscientists to affordably gather information about fault lines and other subsurface areas of interest," said Talwani, the Schlumberger Professor of Geophysics. "Moreover, these flights will give us a baseline measurement that we can compare with future surveys to find out how things are changing in the shallow crust beneath the surface of the fault."

The experiments take advantage of the fact that gravity varies slightly over the Earth’s surface, due to small changes in the mass of subsurface rock and sediments. Using sophisticated instruments developed for nuclear submarines during the Cold War, the research team will measure the gravity gradient, or the rate at which gravity changes from place to place along the San Andreas.

The flights are being conducted near Parkfield, because that is the site of the International Continental Drilling project, a scientific mission that’s taking core samples within the region that Talwani’s team is measuring. This physical evidence will help Talwani’s team as it analyzes its data.

Ultimately, Talwani hopes the technology will change the economics of studying fault lines by making it affordable to conduct baseline and follow-up surveys of significant portions of fault lines -- something that just isn’t cost effective with land-based instruments.

The gravity gradiometer that’s being used this week was developed at great expense by Lockheed-Martin during the Cold War. It was originally developed as a silent navigation system for nuclear submarines, and some of the underlying technology of the instrument remains classified.

Talwani’s group is contracting with the Houston-based Bell Geospace Inc. to carry out the airborne gradiometer survey. The project is supported by the National Science Foundation, the National Imagery and Mapping Agency and several industrial firms. More information about the San Andreas Project is available at: http://cohesion.rice.edu/naturalsciences/earthscience/research.cfm?doc_id=2815

Talwani, currently on leave from Rice, is serving as president of Integrated Ocean Drilling Program Management International, the central management organization of the Integrated Ocean Drilling Program (IODP). With offices in Washington, D.C. and Sapporo, Japan, IODP-MI is responsible for overseeing the science planning, engineering development, site survey data management, core sample repositories, publication, education and outreach of the world’s largest marine geoscience research program. Using technologically advanced ocean-drilling techniques and drilling platforms in the U.S., Europe, and Japan, IODP’s exploration teams collect and study subseafloor sediments and rocks worldwide. IODP is funded by The National Science Foundation and Japan’s Ministry of Education, Culture, Sports, Science and Technology.

Formerly, Talwani was a chief scientist for Gulf Research and Development and director of Columbia University’s Lamont-Doherty Geological Observatory. He joined Rice’s faculty in 1985.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu
http://cohesion.rice.edu/naturalsciences/earthscience/research.cfm?doc_id=2815

More articles from Earth Sciences:

nachricht Artificial Glaciers in Response to Climate Change?
10.08.2018 | Universität Heidelberg

nachricht Planet at risk of heading towards irreversible “Hothouse Earth” state
07.08.2018 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Breaking down the Wiedemann-Franz law

13.08.2018 | Physics and Astronomy

Joining forces for immune research

13.08.2018 | Life Sciences

Another step forward on universal quantum computer

13.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>