Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First-of-its-kind experiment on San Andreas

08.09.2004


Quake researchers ’look’ deep inside fault with cold war-era gravity sensor



Using classified technology developed by the military during the Cold War, a team of geoscientists led by Rice University’s Manik Talwani is conducting a first-of-its-kind experiment on California’s famed San Andreas fault this week. The researchers will gather data that could give scientists a much clearer picture of the fault’s "gouge zone," a region 2-3 kilometers beneath the earth consisting of gravel-sized rock that is created when continental plates grind against one another.

Little data has been collected on the deep underlying structures of fault lines because it’s very expensive to drill deep wells and install instruments that far below ground. This week’s experiments take advantage of extremely sensitive gravity instruments that will be flown over the site in an airplane. By taking to the air, Talwani and his colleagues will be able to cover a 100-square kilometer region of the San Andreas near the town of Parkfield, in central California.


"If this technique works, it will open the door for geoscientists to affordably gather information about fault lines and other subsurface areas of interest," said Talwani, the Schlumberger Professor of Geophysics. "Moreover, these flights will give us a baseline measurement that we can compare with future surveys to find out how things are changing in the shallow crust beneath the surface of the fault."

The experiments take advantage of the fact that gravity varies slightly over the Earth’s surface, due to small changes in the mass of subsurface rock and sediments. Using sophisticated instruments developed for nuclear submarines during the Cold War, the research team will measure the gravity gradient, or the rate at which gravity changes from place to place along the San Andreas.

The flights are being conducted near Parkfield, because that is the site of the International Continental Drilling project, a scientific mission that’s taking core samples within the region that Talwani’s team is measuring. This physical evidence will help Talwani’s team as it analyzes its data.

Ultimately, Talwani hopes the technology will change the economics of studying fault lines by making it affordable to conduct baseline and follow-up surveys of significant portions of fault lines -- something that just isn’t cost effective with land-based instruments.

The gravity gradiometer that’s being used this week was developed at great expense by Lockheed-Martin during the Cold War. It was originally developed as a silent navigation system for nuclear submarines, and some of the underlying technology of the instrument remains classified.

Talwani’s group is contracting with the Houston-based Bell Geospace Inc. to carry out the airborne gradiometer survey. The project is supported by the National Science Foundation, the National Imagery and Mapping Agency and several industrial firms. More information about the San Andreas Project is available at: http://cohesion.rice.edu/naturalsciences/earthscience/research.cfm?doc_id=2815

Talwani, currently on leave from Rice, is serving as president of Integrated Ocean Drilling Program Management International, the central management organization of the Integrated Ocean Drilling Program (IODP). With offices in Washington, D.C. and Sapporo, Japan, IODP-MI is responsible for overseeing the science planning, engineering development, site survey data management, core sample repositories, publication, education and outreach of the world’s largest marine geoscience research program. Using technologically advanced ocean-drilling techniques and drilling platforms in the U.S., Europe, and Japan, IODP’s exploration teams collect and study subseafloor sediments and rocks worldwide. IODP is funded by The National Science Foundation and Japan’s Ministry of Education, Culture, Sports, Science and Technology.

Formerly, Talwani was a chief scientist for Gulf Research and Development and director of Columbia University’s Lamont-Doherty Geological Observatory. He joined Rice’s faculty in 1985.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu
http://cohesion.rice.edu/naturalsciences/earthscience/research.cfm?doc_id=2815

More articles from Earth Sciences:

nachricht Ten-year anniversary of the Neumayer Station III
18.01.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht The pace at which the world’s permafrost soils are warming
16.01.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>