Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Higher Water Temperatures and Reduced Ice Cover In the Arctic Ocean

27.08.2004


Over the past six weeks, scientists aboard the research vessel "Polarstern" of the Alfred Wegener Institute for Polar and Marine Research have been investigating changes in ocean temperature and sea ice cover in the area of Fram Strait between Spitsbergen and Greenland.

In this area significant exchange of water masses between the Arctic Ocean and the Atlantic Ocean takes place. The ongoing process of global warming throughout the past years has also altered conditions in Fram Strait and the North Polar Sea.

Recordings of temperature measurements in Fram Strait at various water depths indicate a rise in temperature since 1990 in the West Spitsbergen Current, which carries warm Atlantic Ocean water into the Arctic Ocean. The recent measurements by oceanographers aboard "Polarstern" point towards a further warming tendency. Compared to the previous year, temperatures recorded in the upper 500 metres of ocean current were up to 0.6 °C higher this year. The rise in temperature was detectable to a water depth of 2000 metres, representing an exceptionally strong signal by ocean standards. Consequently, the influx of warmer water causes a change in sea ice cover. Satellite images have documented a clear recession of sea ice edges in the Fram Strait region and in the Barents Sea over the last three years.



Climate processes are not only affected by the horizontal extent of sea ice, but also by its thickness. In order to determine ice thickness, the sea ice research group of the Alfred Wegener Institute has, over the past years, developed an airborne ice thickness sensor. It is towed by helicopter approximately 30 metres above ground and can cover up to 100 kilometres distance within one hour. This method allows construction of a representative picture of sea ice thickness. The thickness sensor is validated by flying the helicopter over a series of drilled ice holes (of known depth) arrayed along a transect line. In this way the precision of the sensor can be confirmed.

An exceptional type of comparison between measurements was carried out on Wednesday off the East Greenland coast, where "Polarstern" met the British research icebreaker "James Clark Ross": for the very first time in the history of sea ice research, sea ice topography was measured simultaneously from above and below. For this purpose, a British autonomous underwater vehicle (AUV) scanned the underside of the sea ice using sonar, while the sea ice physicists of the Alfred Wegener Institute evaluated the ice surface as well as its thickness from above, using the helicopter-towed ice thickness sensor.

These activities served as preparation for the calibration of the satellite "CryoSat". Starting in March 2005, "CryoSat" will measure sea ice thickness continually from a height of 700 kilometres in both polar regions. The quantification of sea ice thickness and its changes are of great importance in international climate research. Sea ice has a key role in climate systems and is considered a sensitive indicator of climate fluctuations. "CryoSat" will be used to investigate whether regional changes occur in all polar regions as a consequence of global warming.

Presently, "Polarstern" is on her 20th Arctic expedition. Since July 16th, scientists of the Alfred Wegener Institute for Polar and Marine Research have been working as part of an international team carrying out atmospheric chemical measurements, gathering data from the ocean and sea ice and collecting rock samples from the sea floor. On Sunday, "Polarstern" will reach Tromsø.

Torsten Fischer | alfa
Further information:
http://www.awi-bremerhaven.de

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>