Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Higher Water Temperatures and Reduced Ice Cover In the Arctic Ocean

27.08.2004


Over the past six weeks, scientists aboard the research vessel "Polarstern" of the Alfred Wegener Institute for Polar and Marine Research have been investigating changes in ocean temperature and sea ice cover in the area of Fram Strait between Spitsbergen and Greenland.

In this area significant exchange of water masses between the Arctic Ocean and the Atlantic Ocean takes place. The ongoing process of global warming throughout the past years has also altered conditions in Fram Strait and the North Polar Sea.

Recordings of temperature measurements in Fram Strait at various water depths indicate a rise in temperature since 1990 in the West Spitsbergen Current, which carries warm Atlantic Ocean water into the Arctic Ocean. The recent measurements by oceanographers aboard "Polarstern" point towards a further warming tendency. Compared to the previous year, temperatures recorded in the upper 500 metres of ocean current were up to 0.6 °C higher this year. The rise in temperature was detectable to a water depth of 2000 metres, representing an exceptionally strong signal by ocean standards. Consequently, the influx of warmer water causes a change in sea ice cover. Satellite images have documented a clear recession of sea ice edges in the Fram Strait region and in the Barents Sea over the last three years.



Climate processes are not only affected by the horizontal extent of sea ice, but also by its thickness. In order to determine ice thickness, the sea ice research group of the Alfred Wegener Institute has, over the past years, developed an airborne ice thickness sensor. It is towed by helicopter approximately 30 metres above ground and can cover up to 100 kilometres distance within one hour. This method allows construction of a representative picture of sea ice thickness. The thickness sensor is validated by flying the helicopter over a series of drilled ice holes (of known depth) arrayed along a transect line. In this way the precision of the sensor can be confirmed.

An exceptional type of comparison between measurements was carried out on Wednesday off the East Greenland coast, where "Polarstern" met the British research icebreaker "James Clark Ross": for the very first time in the history of sea ice research, sea ice topography was measured simultaneously from above and below. For this purpose, a British autonomous underwater vehicle (AUV) scanned the underside of the sea ice using sonar, while the sea ice physicists of the Alfred Wegener Institute evaluated the ice surface as well as its thickness from above, using the helicopter-towed ice thickness sensor.

These activities served as preparation for the calibration of the satellite "CryoSat". Starting in March 2005, "CryoSat" will measure sea ice thickness continually from a height of 700 kilometres in both polar regions. The quantification of sea ice thickness and its changes are of great importance in international climate research. Sea ice has a key role in climate systems and is considered a sensitive indicator of climate fluctuations. "CryoSat" will be used to investigate whether regional changes occur in all polar regions as a consequence of global warming.

Presently, "Polarstern" is on her 20th Arctic expedition. Since July 16th, scientists of the Alfred Wegener Institute for Polar and Marine Research have been working as part of an international team carrying out atmospheric chemical measurements, gathering data from the ocean and sea ice and collecting rock samples from the sea floor. On Sunday, "Polarstern" will reach Tromsø.

Torsten Fischer | alfa
Further information:
http://www.awi-bremerhaven.de

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>