Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spring through fall, cities are greener longer than neighboring rural regions

29.07.2004


BU team shows so-called urban heat island effect influences onset of ’greenup,’ dormancy



Summer can sometimes be a miserably hot time for city dwellers, but new research shows that an urban setting allows plants to bask in a hot-house environment that keeps them greener longer.

Recent NASA-sponsored research from a team of geographers in Boston University’s Center for Remote Sensing shows that the growing season for vegetation in about 70 urban areas in North America is, on average, 15 days longer than that in rural regions surrounding the cities studied. Led by Xiaoyang Zhang, a research assistant professor in BU’s Geography Department, the team found that, like many urban-dwelling humans, urban greenery lives at a more intense pace, getting as much as a seven-day jump-start on spring and up to eight additional days before winter dormancy than vegetation in surrounding rural areas.


This happens largely because the asphalt, steel, exhaust, and other environmental changes introduced by humans contribute to what is known as the urban heat island effect. The researchers found this influence to be far-reaching. Taken together, the heat island effect for the areas studied ripples beyond urban boundaries to create an ecological "footprint" 2.4 times greater than that of urban land use in eastern North America.

Their analyses also show that changes in land surface temperatures and when vegetation first becomes green are not significantly related to urban size, leading the team to speculate that factors related to population density may play the more important role in the observed effects. The data do, however, show that "greenup" changes in surrounding rural areas are linked to city size -- the larger the city, the longer the reach of the extended greenup effect.

To date, more than one-third of the land surface of Earth has been transformed by human activities. These changes have not only altered the look of the land, but, according to a growing body of research, have also affected climate and significantly changed Earth’s ecosystems. In an attempt to determine the effect that the urban heat island phenomenon has on the growing season for urban vegetation, the BU team used satellite data to evaluate when vegetation in urban and rural settings first became green and then when it entered dormancy, thereby ending one season’s growing cycle.

The researchers calculated the onsets of vegetation greenup and dormancy for about 70 urban areas using so-called NBAR data gathered between January 1 and December 31, 2001, by NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). The MODIS instrument, aboard NASA satellites Terra and Aqua, gathers data on Earth’s entire surface every one to two days. The team used "nighttime lights" data and MODIS data to determine the size of the urban areas studied.

To determine the radiating effect of urban heat islands on vegetation in surrounding regions, the researchers assessed greenup data in six, two-to-three kilometer zones demarcated from urban edges. Within these zones, to a total distance of 20 km., the scientists measured land-surface temperatures and vegetation greenup responses.

They found that greenup occurs earliest in urban areas but that urban climate shows a substantial influence on vegetation growing up to 10 km. beyond the edge of urban land cover. This greenup difference is especially pronounced in the Washington, DC–Philadelphia–New York City corridor, where urban greenup occurs about 5.5 days and 8.7 days earlier than in zones 0 – 3 km. and 8 – 10 km., respectively, from the urban edge. In all, they found the strength of the urban influence decreases with distance from the perimeter of urban land cover.

Patterns in greenup onset show that urban–rural differences in vegetation response are a function of land surface temperatures, showing a significant linear trend between change in greenup and change in temperature. The trend generally shows that greenup advances three days for each one degree Celsius increase in temperature. This trend was not found for onset of dormancy, suggesting, according to the researchers, a more complex relationship that is influenced not only by temperature but also by daily exposure to light and water availability. The team’s findings are reported in a recent issue of Geophysical Research Letters.

Ann Marie Menting | EurekAlert!
Further information:
http://www.bu.edu
http://www.gsfc.nasa.gov

More articles from Earth Sciences:

nachricht Huge stores of Arctic sea ice likely contributed to past climate cooling
21.02.2020 | University of Massachusetts Amherst

nachricht First research results on the "spectacular meteorite fall" of Flensburg
18.02.2020 | Westfälische Wilhelms-Universität Münster

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>