Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spring through fall, cities are greener longer than neighboring rural regions

29.07.2004


BU team shows so-called urban heat island effect influences onset of ’greenup,’ dormancy



Summer can sometimes be a miserably hot time for city dwellers, but new research shows that an urban setting allows plants to bask in a hot-house environment that keeps them greener longer.

Recent NASA-sponsored research from a team of geographers in Boston University’s Center for Remote Sensing shows that the growing season for vegetation in about 70 urban areas in North America is, on average, 15 days longer than that in rural regions surrounding the cities studied. Led by Xiaoyang Zhang, a research assistant professor in BU’s Geography Department, the team found that, like many urban-dwelling humans, urban greenery lives at a more intense pace, getting as much as a seven-day jump-start on spring and up to eight additional days before winter dormancy than vegetation in surrounding rural areas.


This happens largely because the asphalt, steel, exhaust, and other environmental changes introduced by humans contribute to what is known as the urban heat island effect. The researchers found this influence to be far-reaching. Taken together, the heat island effect for the areas studied ripples beyond urban boundaries to create an ecological "footprint" 2.4 times greater than that of urban land use in eastern North America.

Their analyses also show that changes in land surface temperatures and when vegetation first becomes green are not significantly related to urban size, leading the team to speculate that factors related to population density may play the more important role in the observed effects. The data do, however, show that "greenup" changes in surrounding rural areas are linked to city size -- the larger the city, the longer the reach of the extended greenup effect.

To date, more than one-third of the land surface of Earth has been transformed by human activities. These changes have not only altered the look of the land, but, according to a growing body of research, have also affected climate and significantly changed Earth’s ecosystems. In an attempt to determine the effect that the urban heat island phenomenon has on the growing season for urban vegetation, the BU team used satellite data to evaluate when vegetation in urban and rural settings first became green and then when it entered dormancy, thereby ending one season’s growing cycle.

The researchers calculated the onsets of vegetation greenup and dormancy for about 70 urban areas using so-called NBAR data gathered between January 1 and December 31, 2001, by NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). The MODIS instrument, aboard NASA satellites Terra and Aqua, gathers data on Earth’s entire surface every one to two days. The team used "nighttime lights" data and MODIS data to determine the size of the urban areas studied.

To determine the radiating effect of urban heat islands on vegetation in surrounding regions, the researchers assessed greenup data in six, two-to-three kilometer zones demarcated from urban edges. Within these zones, to a total distance of 20 km., the scientists measured land-surface temperatures and vegetation greenup responses.

They found that greenup occurs earliest in urban areas but that urban climate shows a substantial influence on vegetation growing up to 10 km. beyond the edge of urban land cover. This greenup difference is especially pronounced in the Washington, DC–Philadelphia–New York City corridor, where urban greenup occurs about 5.5 days and 8.7 days earlier than in zones 0 – 3 km. and 8 – 10 km., respectively, from the urban edge. In all, they found the strength of the urban influence decreases with distance from the perimeter of urban land cover.

Patterns in greenup onset show that urban–rural differences in vegetation response are a function of land surface temperatures, showing a significant linear trend between change in greenup and change in temperature. The trend generally shows that greenup advances three days for each one degree Celsius increase in temperature. This trend was not found for onset of dormancy, suggesting, according to the researchers, a more complex relationship that is influenced not only by temperature but also by daily exposure to light and water availability. The team’s findings are reported in a recent issue of Geophysical Research Letters.

Ann Marie Menting | EurekAlert!
Further information:
http://www.bu.edu
http://www.gsfc.nasa.gov

More articles from Earth Sciences:

nachricht Research icebreaker Polarstern begins the Antarctic season
09.11.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Far fewer lakes below the East Antarctic Ice Sheet than previously believed
08.11.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>