Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Observations on Shape of Ocean Mountain Ranges Turn an Old Idea Upside Down

23.06.2004


Figure 1. Perspective view from the south of the mid-ocean ridge off the coast of Central America (far distance) showing how the morphology of this spreading ridge changes across transform faults and smaller ridge offsets. Note how the more westerly segments (offset in the direction of ridge migration) are shallower and broader than their neighbors. Image credit: Bill Haxby


Figure 2. Close-up perspective view from figure above showing how the shape and height of the ridge axis changes across a major transform fault. Image credit: Bill Haxby


New findings suggest that surface geometry determines volcanic activity

What causes the peaks and valleys of the world’s great mountains? For continental ranges like the Appalachians or the Northwest’s Cascades, the geological picture is clearer. Continents crash or volcanoes erupt, then glaciers erode away. Yet scientists are still puzzling out what makes the highs high and the lows low for the planet’s largest mountain chain, the 55,000-mile-long Mid-Ocean Ridge.

This week in the journal Nature, scientists at Columbia University’s Lamont Doherty Earth Observatory describe new findings that challenge current thinking about how the silhouette of the mile’s high deepwater ridge is formed.



The long string of mountains that zig-zags across the ocean floor define the boundaries of the crustal plates that make up the Earth’s surface. At the center of the Mid-Ocean Ridge is a continuous fissure in which hot magma bubbles up from below and cools to become new crust material added to the plates on either side. For decades, the most popular explanation for the ridge’s distinct undulating topography has been that magma flows upward from the mantle interior in directed streams of differing sizes. Larger magma flows lead to higher, broader peaks, while a magma trickle or drought is reflected in lower, more narrow valleys.

But after analyzing thousands of miles of the Mid-Ocean Ridge, Lamont marine geologist Suzanne Carbotte and co-authors Christopher Small and Katie Donnelly disagree. They discovered that the height and width of underwater mountains are highly correlated to the direction that the ridge and connecting plates move across the surface of the planet.

“Our observations indicate that these variations in ridge height reflect a top down rather than a bottom up process,” said Carbotte. “The motion of the plates seems to be the important factor, not the mantle.”

The twelve crustal plates that make up the surface of the Earth are constantly jostling each other as some grow in size and others shrink. In response, the Mid-Ocean Ridge migrates very slowly, moving at a rate of about an inch a decade in relation to fixed hot areas of the mantle below. Each underwater range in the mountain chain can be offset from the next by up to hundreds of miles, connected by a long perpendicular fault line. This geometry creates distinct ridge segments jutting back and forth.

Their results have implications for geologists concerned with crust and mantle structure, as well as for biologists interested in life around hydrothermal vents. Previously, many scientists believed that the structure of the upper mantle must be both physically and chemically diverse in order to explain the peaks and valleys along the Mid-Ocean Ridge. This implied that ridge segment would spend time above both high and low magma streams as it travels over the mantle.

“Our findings suggest that the upper mantle could be quite uniform and still produce a varied topography due solely to plate migration,” said Carbotte. “This has all sorts of implications. For example, if certain ridge segments are just more volcanically active than others due simply to their geometry, those locations may host hydrothermal communities over very long periods of time.”

This study was funded by The National Science Foundation.

The Lamont-Doherty Earth Observatory, a member of The Earth Institute at Columbia University, is one of the world’s leading research centers examining the planet from its core to its atmosphere, across every continent and every ocean. From global climate change to earthquakes, volcanoes, environmental hazards and beyond, Observatory scientists provide the basic knowledge of Earth systems needed to inform the future health and habitability of our planet. For more information, visit www.ldeo.columbia.edu.

The Earth Institute at Columbia University is among the world’s leading academic centers for the integrated study of Earth, its environment, and society. The Earth Institute builds upon excellence in the core disciplines—earth sciences, biological sciences, engineering sciences, social sciences and health sciences—and stresses cross-disciplinary approaches to complex problems. Through its research training and global partnerships, it mobilizes science and technology to advance sustainable development, while placing special emphasis on the needs of the world’s poor.

Mary Tobin | EurekAlert!
Further information:
http://www.earth.columbia.edu

More articles from Earth Sciences:

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

nachricht Earth's magnetic field measured using artificial stars at 90 kilometers altitude
14.11.2018 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>