Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Observations on Shape of Ocean Mountain Ranges Turn an Old Idea Upside Down

23.06.2004


Figure 1. Perspective view from the south of the mid-ocean ridge off the coast of Central America (far distance) showing how the morphology of this spreading ridge changes across transform faults and smaller ridge offsets. Note how the more westerly segments (offset in the direction of ridge migration) are shallower and broader than their neighbors. Image credit: Bill Haxby


Figure 2. Close-up perspective view from figure above showing how the shape and height of the ridge axis changes across a major transform fault. Image credit: Bill Haxby


New findings suggest that surface geometry determines volcanic activity

What causes the peaks and valleys of the world’s great mountains? For continental ranges like the Appalachians or the Northwest’s Cascades, the geological picture is clearer. Continents crash or volcanoes erupt, then glaciers erode away. Yet scientists are still puzzling out what makes the highs high and the lows low for the planet’s largest mountain chain, the 55,000-mile-long Mid-Ocean Ridge.

This week in the journal Nature, scientists at Columbia University’s Lamont Doherty Earth Observatory describe new findings that challenge current thinking about how the silhouette of the mile’s high deepwater ridge is formed.



The long string of mountains that zig-zags across the ocean floor define the boundaries of the crustal plates that make up the Earth’s surface. At the center of the Mid-Ocean Ridge is a continuous fissure in which hot magma bubbles up from below and cools to become new crust material added to the plates on either side. For decades, the most popular explanation for the ridge’s distinct undulating topography has been that magma flows upward from the mantle interior in directed streams of differing sizes. Larger magma flows lead to higher, broader peaks, while a magma trickle or drought is reflected in lower, more narrow valleys.

But after analyzing thousands of miles of the Mid-Ocean Ridge, Lamont marine geologist Suzanne Carbotte and co-authors Christopher Small and Katie Donnelly disagree. They discovered that the height and width of underwater mountains are highly correlated to the direction that the ridge and connecting plates move across the surface of the planet.

“Our observations indicate that these variations in ridge height reflect a top down rather than a bottom up process,” said Carbotte. “The motion of the plates seems to be the important factor, not the mantle.”

The twelve crustal plates that make up the surface of the Earth are constantly jostling each other as some grow in size and others shrink. In response, the Mid-Ocean Ridge migrates very slowly, moving at a rate of about an inch a decade in relation to fixed hot areas of the mantle below. Each underwater range in the mountain chain can be offset from the next by up to hundreds of miles, connected by a long perpendicular fault line. This geometry creates distinct ridge segments jutting back and forth.

Their results have implications for geologists concerned with crust and mantle structure, as well as for biologists interested in life around hydrothermal vents. Previously, many scientists believed that the structure of the upper mantle must be both physically and chemically diverse in order to explain the peaks and valleys along the Mid-Ocean Ridge. This implied that ridge segment would spend time above both high and low magma streams as it travels over the mantle.

“Our findings suggest that the upper mantle could be quite uniform and still produce a varied topography due solely to plate migration,” said Carbotte. “This has all sorts of implications. For example, if certain ridge segments are just more volcanically active than others due simply to their geometry, those locations may host hydrothermal communities over very long periods of time.”

This study was funded by The National Science Foundation.

The Lamont-Doherty Earth Observatory, a member of The Earth Institute at Columbia University, is one of the world’s leading research centers examining the planet from its core to its atmosphere, across every continent and every ocean. From global climate change to earthquakes, volcanoes, environmental hazards and beyond, Observatory scientists provide the basic knowledge of Earth systems needed to inform the future health and habitability of our planet. For more information, visit www.ldeo.columbia.edu.

The Earth Institute at Columbia University is among the world’s leading academic centers for the integrated study of Earth, its environment, and society. The Earth Institute builds upon excellence in the core disciplines—earth sciences, biological sciences, engineering sciences, social sciences and health sciences—and stresses cross-disciplinary approaches to complex problems. Through its research training and global partnerships, it mobilizes science and technology to advance sustainable development, while placing special emphasis on the needs of the world’s poor.

Mary Tobin | EurekAlert!
Further information:
http://www.earth.columbia.edu

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>