Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Version of Premier Global Climate Model Released

23.06.2004

The National Center for Atmospheric Research (NCAR) in Boulder, Colo., is unveiling a powerful new version of a supercomputer-based system to model Earth’s climate and to project global temperature rise in coming decades. Scientists will contribute results to the next assessment by the Intergovernmental Panel on Climate Change (IPCC), an international research body that advises policymakers on the likely impacts of climate change. The system, known as the Community Climate System Model, version 3 (CCSM3), indicates in a preliminary finding that global temperatures may rise more than the previous version had projected if societies continue to emit large quantities of carbon dioxide into the atmosphere.

NCAR developed the model in collaboration with researchers at universities and laboratories across the country, with funding from NSF as well as the Department of Energy, the National Oceanic and Atmospheric Administration, and the National Aeronautics and Space Administration. It is releasing the model results and the underlying computer codes to atmospheric researchers and other users worldwide.

"The release of CCSM3 marks a significant milestone in development of climate models," said Jay Fein, director of NSF’s climate dynamics program. "The investment by the NSF, the Department of Energy and the scientific community is yielding new insight into the complexities of the Earth system and the likely responses of our planet to natural and anthropogenic influences."

CCSM3 shows global temperatures could rise by 2.6 degrees Celsius (4.7 degrees Fahrenheit) in a hypothetical scenario in which atmospheric levels of carbon dioxide are suddenly doubled. That is significantly more than the 2 degree Celsius (3.6 degree Fahrenheit) increase that had been indicated by the preceding version of the model.

William Collins, an NCAR scientist who oversaw the development of CCSM3, says researchers have yet to pin down exactly what is making the model more sensitive to an increased level of carbon dioxide. But he says the model overall is significantly more accurate than its predecessor.

"This model makes substantial improvements in simulating atmospheric, oceanic and terrestrial processes," Collins says. "It has done remarkably well in reproducing the climate of the last century, and we’re now ready to begin using it to study the climate of the next century."

As scientists learn more about the atmosphere, the world’s most powerful climate models generally agree about the climatic effects of carbon dioxide, an important greenhouse gas emitted by motor vehicles, power plants, and other sources. Observations show that atmospheric levels of carbon dioxide have increased from 280 parts per million by volume (ppmv) in preindustrial times to more than 370 ppmv today, and the increase is continuing. A doubling of carbon dioxide over present-day levels would significantly increase global temperatures, according to all the major models. The models do not always agree, however, on the complex impacts of clouds, sea ice, and other pieces of the climate system.

CCSM3 is one of the world’s leading general-circulation climate models, which are extraordinarily sophisticated computer tools that incorporate phenomena ranging from the effect that volcanic eruptions have on temperature patterns to the impact of shifting sea ice on sunlight absorbed by the oceans. Climate models work by solving mathematical formulas, which represent the chemical and physical processes that drive Earth’s climate, for thousands of points in the atmosphere, oceans, sea ice, and land surface. CCSM3 is so complex that it requires about 3 trillion computer calculations to simulate a single day of global climate.

With CCSM3, scientists were able to add four times as many points for the land and atmosphere than had existed in the previous version of CCSM, thereby producing far more information about regional variations in climate and climate change. The new version also captures such features as continental land temperatures and upper atmospheric temperatures far more accurately than the previous version. In a test, the model closely simulated changes in global temperatures over the last century.

In addition to simulating temperatures over the next century, scientists will use the model to study climate patterns of the past, such as the peak of the last ice age 21,000 years ago. They will also use it to probe chemical processes and the cycling of carbon between the atmosphere, ocean, and land, as well as the localized impacts of sulfates and other pollutants on climate.

Julie A. Smith | NSF
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht A damming trend
17.12.2018 | Michigan State University

nachricht Live from the ocean research vessel Atlantis
13.12.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>