Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists map Cartwright country

16.06.2004


’Big Bonanza’ and the Comstock Lode



Remember the burning Ponderosa map at the beginning of the long-running TV show "Bonanza"? It’s up in flames before you can read all the place names.
Now a geologist at Washington University in St. Louis has replaced that map with one of the famous ore site known as the Comstock Lode, a part of which is the "Big Bonanza."

While it’s doubtful that Hoss, Adam and Little Joe – not to mention the sages, Pa and Hop Sing – could make heads nor tails of it, the map is a valuable contribution to geology because it gives an interpretation of the flow of hot waters interacting with rock some 14 million years ago that created the ore district. Between 1859 and 1882, the Comstock Lode produced gold and silver in such quantities that the bullion would be worth several billion dollars in today’s markets.



Robert Criss, Ph.D., professor of earth and planetary sciences in Arts & Sciences, and his former graduate student Michael J. Singleton, Ph.D., now at Lawrence Berkeley National Laboratory, analyzed 327 rock samples collected from a portion of the Comstock Lode as well as historical samples and ones from the Smithsonian Institute and "visualized" a kind of symmetrical flow. They were able to determine the flow thanks to a mathematical technique called kriging that allows computer contouring of oxygen isotope data gleaned from the rock samples.

When water and rock interact in ore deposition they exchange isotopes. Isotopes are different variations of the same element. There are three oxygen isotopes, oxygen-16, -17 and -18. All three behave chemically as oxygen, differing only in their mass. Most is oxygen-16, but about one oxygen atom in 500 is oxygen-18, and only one in about 2,500 is oxygen-17. Rocks are about 50 percent oxygen by weight, water 90 percent. The exchange of isotopes – the researchers measured O-16 and O-18– creates "patterns of disturbance" in the rock, which the researchers can map by combining a lot of field work with lab analysis and computing.

"We can map and interpret these patterns long after the disturbance happened -– 12 to 14 million years ago" said Criss. " The rocks preserve a record of what happened."

Criss said the hydrothermal flow geometry that created the ore district was a longitudinal roll pattern superimposed on a unicellular flow system. Think of the longitudinal rolls as two parallel tubes and the unicellular system as a flat roll. The map is the first evidence showing the longitudinal roll pattern occurring in nature. The system had been predicted by theory but never seen before in an ore district.

"We’ve shown that these modes of convection can occur on Earth under the right circumstances," Criss said. "It’s the first description of such symmetry in an ore district. The ore body positions have an obvious relationship to these rolls. "

The research was published in the April issue of the Journal of Geophysical Research. It was supported by funding from the National Science Foundation.

The finding is important for geologists to understand the creation of ore deposits. These events occur underground and must be analyzed remotely. And it could have economic implications.

"It’s possible, under perfect conditions, to understand currents of fluid that make ore bodies," Criss said. "If this could become part of a predictive tool to locate currents that form ore bodies, that would be a valuable outcome because we don’t have very good theories on how ore bodies are formed. It’s a very peculiar process."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu/

More articles from Earth Sciences:

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

nachricht Drones survey African wildlife
11.07.2018 | Schweizerischer Nationalfonds SNF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>