Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fish story linked to climate cycle

15.06.2004


Old fish bones can tell scientists about more than what people used to eat. They can also provide clues to the climate in which those people lived. In the scientific journal Quaternary Research, a team led by three University of Maine scientists reports using fish bones from an archaeological site in Peru to describe the timing of Pacific Ocean climate cycles linked to El Nino.



The report provides new evidence for a theory stating that biological cycles in the world’s oceans reflect subtle changes in climate. Industrial scale fish harvesting can also affect fish populations and thus make it difficult to discern the relationship between fisheries and climate.

The UMaine research points to changes in fisheries that pre-date modern harvesting. Those changes are thus more likely to be climate related.


The paper is titled "Geoarchaeological evidence for multidecadal natural climatic variability and ancient Peruvian fisheries." Co-authors are: from UMaine, archaeologist Dan Sandweiss, Kirk Maasch of the Climate Change Institute, Fei Chai of the School of Marine Sciences; and from the University of Georgia, Fred Andrus and Elizabeth Reitz.

With data gleaned from excavations in the ancient village of Lo Demás just south of modern day Lima, the researchers reported that a shift from anchovy to sardine abundance occurred at about 1500 A.D. Evidence for a climate shift at about the same time is contained in annual snowfall rates recorded in Andean glacial ice cores. Those cores show that the warm phase of the El Nino Southern Oscillation climate cycle contributes to lower snow fall rates. A reduction in anchovies and an increase in sardines also occur in those phases.

Sandweiss and a different research team excavated the Lo Demás site in the early 1980s as part of his doctoral studies. "Lo Demás was a specialized fish processing site," says Sandweiss, lead author on the Quaternary Research paper.

Native people used the site to gut fish and hang them to dry. "Because of the dry climate, the bones are well preserved," he says. "We found the post holes and the drip lines in the soil above the racks where the fish were hung. The soil was still saturated with fish oil. There were 500-year-old pottery shards that still smelled like rotten fish," Sandweiss adds.

When he was working at Lo Demás, Sandweiss did not look to climate for an explanation of the shift from anchovy to sardine abundance. It wasn’t until other researchers in the last five years began reporting modern evidence for such a connection throughout the Pacific Ocean that he went back to the Lo Demás data.

"The rare combination of location, high density of fish bones, and good chronological control make this an excellent site to study Pacific Ocean climate change," he says.

Over the past century, sardines and anchovies have experienced boom and bust cycles that are almost mirror images of each other. When anchovies are abundant, sardines tend to be less abundant, and vice-versa.

Since each species has a different life cycle and requires different temperature and nutrient conditions, scientists have suggested that Pacific Ocean climate shifts back and forth between a "sardine regime" and an "anchovy regime." Each regime is marked by different temperature, circulation and nutrient patterns.

In an article published in the journal Science in 2003, a research team led by Francisco Chavez of the Monterrey Bay Aquarium Research Institute documented anchovy and sardine harvesting cycles over the past century in Japan, California and Peru. They linked these cycles to climate patterns such as El Nino, the periodic warming of the eastern Pacific that plays havoc with the weather.

The work by Sandweiss, et al. extends the El Nino connection back to about 500 years ago at the end of the Inca Empire in Peru. "This strongly suggests that variability in the fisheries had to be linked to the climate, that this was a climate issue rather than a fish harvesting issue," Sandweiss says.

Anchovies were far more common than sardines in much older Peruvian archaeological sites stretching back as far as 8,000 years ago, the report notes. Such findings are consistent with an El Nino frequency that was less frequent than what is occurring in modern times.

The anchovy-sardine rollercoaster is not the first biological cycle to be linked to climate. Scientists have found similar evidence in ancient corals, tree rings and mollusk shells. In previous reports published in the journal Science, Sandweiss and colleagues have linked changes in mollusk species and temple building activities to shifts in the frequency of El Nino.

Dan Sandweiss | EurekAlert!
Further information:
http://www.umaine.edu/

More articles from Earth Sciences:

nachricht Live from the ocean research vessel Atlantis
13.12.2018 | National Science Foundation

nachricht NSF-supported scientists present new research results on Earth's critical zone
13.12.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>