Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meteorite Crash Turned Earth Inside Out

03.06.2004


A devastating meteorite collision caused part of the Earth’s crust to flip inside out billions of years ago and left a dusting of a rare metal scattered on the top of the crater, says new U of T research.



The study, published in the June 3 issue of Nature, examines the devastating effects of meteorite impacts on the Earth’s evolution. Researchers from the University of Toronto and the Geological Survey of Canada studied the remains of a 250-kilometre wide crater in Sudbury, Ontario, known as the Sudbury Igneous Complex, caused by a collision with a Mount Everest-sized meteorite 1.8 billion years ago. They discovered that the meteorite burrowed deep into the Earth’s upper crust - which measures an average of 35 kilometres thick - and caused the upper crust to be buried under several kilometres of melted rock derived from the lower crust.

The dynamics of meteorite impacts remain a source of debate among researchers and, until now, there has been little hard evidence to prove a meteorite could pierce through the Earth’s upper crust and alter its compositional makeup. "It had not really been appreciated that large impacts would selectively move material from the bottom of the crust up to the top," says lead researcher James Mungall, a U of T geology professor. "This has been suggested for the Moon at times in the past but ours is the first observational evidence that this process has operated on Earth."


In the study, Mungall, his graduate student Jacob Hanley and Geological Survey researcher Doreen Ames concluded Sudbury Igneous Complex is predominantly derived from shock-melted lower crust rather than the average of the whole crust as has been previously supposed. The researchers discovered a subtle but significant enrichment of iridium, an extremely rare metal found mainly in the Earth’s mantle and in meteorites. Due to the low magnesium and nickel content found in the samples they concluded that the iridium came from the meteorite itself rather than the Earth’s mantle.

The discovery of the iridium allowed the researchers to paint a picture of what happened billions of years ago, when a meteorite collided with the earth at a velocity exceeding 40 kilometres per second and caused a shock melting of 27,000 cubic kilometres of the crust. "The impact punched a hole to the very base of the crust and the meteorite itself was probably vaporized," says Mungall.

This collision, he says, caused a plume of iridium-enriched vaporized rock to surge up and recondense on top of the impact site. Simultaneously, the cavity collapsed within minutes or hours to form a multi-ring basin 200 to 300 kilometres in diameter and one to six kilometres deep.

"Picture a drop falling into a cup of milk, thus producing a bowl-shaped depression for a moment before the milk outside rushes back in to fill the hole," says Mungall. "Now imagine that the falling drop of milk is a rock 10 kilometres in diameter, and the resulting depression is 30 to 40 kilometres deep."

The Sudbury Basin is the second oldest very large impact crater site in the world but is one of the most accessible and well preserved. The oldest one, South Africa’s two-billion year-old Vredefort Crater, has eroded over time and only the basement remains. Another impact site, the Chicxulub Crater in Yucatan Peninsula, believed to be responsible for the extinction of the dinosaurs, lies buried under beds of limestone.

The study was funded in part by the Geoscience Laboratories of the Ontario Geological Survey and the Geological Survey of Canada.


CONTACT:

James Mungall
Dept of Geology
416-978-2975
mungall@geology.utoronto.ca

Karen Kelly
U of T Public Affairs
416-978-0260
k.kelly@utoronto.ca

Karen Kelly | University of Toronto
Further information:
http://www.utoronto.ca

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>