Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earthquakes beget earthquakes near and far

01.06.2004


Earthquakes not only shake up the local area but they also increase the rate of earthquake events locally and at a distance. The answer to how this happens may be in the laboratory, according to a Penn State researcher.



"We have learned a lot since the Landers earthquake in the Mojave Desert in 1992," says Dr. Chris Marone, professor of geosciences. "We learned that earthquake triggering happens a lot more than we thought. The mechanism is not well understood."

Marone is working with Margaret S. Boettcher, a Ph.D. student he coadvises at the Massachusetts Institute of Technology, and Heather M. Savage, his Ph.D student at Penn State, investigating in the laboratory the way triggering of earthquakes works and whether or not a time lag exists between the initial earthquake and the ones that follow.


The researchers use a deformation apparatus that simulates the fault zone between slipping rock masses and the slipping forces on it. Then a force is placed perpendicular to the fault to simulate the perpendicular vibration caused by the energy waves from the initial earthquake on the already stressed "fault." The researchers reported their results in a recent issue of the Journal of Geophysical Research.

"Yes, we do find lags between the changes in the forces and the changes in the strength," says Marone. "There are seconds of delay in the laboratory between the force being applied and the fault moving."

While the delay in the laboratory is in seconds, in the real world the delay can be from minutes to a week after the initial shock. The researchers believe they know why a delay exists between the vibration waves of the initial earthquake and the motion on other faults. The area of interest is the gouge zone, the space between the solid rock filled with everything from sand to pea size gravel to large boulders. This granular fault gouge can be up to a kilometer in width.

"We have known since the 1800s that compacted grains when sheared expand and increase volume," says Marone. "The best example of this phenomenon, known as dilatancy, is on the beach. Your foot, as you step, shears the compacted sand and the beach surface dries momentarily as water drains into the pore space between grains. When you lift your foot, the granules collapse back into their compacted position, leaving a dry footprint."

Within this gouge zone, a competition between compaction and dilation of the granules takes place. The perpendicular force of the periodic waves produced by the initial earthquake changes the steady state density and porosity. The change in porosity is dilation. Through compaction and dilation, an area parallel to the fault in the gouge is set up where the slipping movement of the earthquake actually takes place.

The Lander’s earthquake was a shallow earthquake and created many surface waves. Other similar earthquakes have occurred in the Mojave, Denali, the Hector Mine earthquake and in ChiChi, Taiwan. Potential for this type of earthquakes exists worldwide.

"People have been taking laboratory data and trying to model seismic hazard from trigger earthquakes," says Marone. "The lag between the time stresses reaches a fault and, when the strength in the fault gouge changes, must be considered to model this properly." The National Science Foundation and the United States Geological Service funded this research.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Earth Sciences:

nachricht Atmospheric pressure impacts greenhouse gas emissions from leaky oil and gas wells
21.10.2019 | University of British Columbia

nachricht Strong storms generating earthquake-like seismic activity
16.10.2019 | Florida State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Fraunhofer LBF and BAM develop faster procedure for flame-retardant plastics

21.10.2019 | Materials Sciences

For EVs with higher range: Take greater advantage of the potential offered by lightweight construction materials

21.10.2019 | Materials Sciences

Benefit and risk: Meta-analysis draws a heterogeneous picture of drug-coated balloon angioplasty

21.10.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>