Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New interpretation of satellite measurements confirms global warming

06.05.2004


For years the debate about climate change has had a contentious sticking point – satellite measurements of temperatures in the troposphere, the layer of atmosphere where most weather occurs, were inconsistent with fast-warming surface temperatures.



But a team led by a University of Washington atmospheric scientist has used satellite data in a new and more accurate way to show that, for more than two decades, the troposphere has actually been warming faster than the surface. The new approach relies on information that better separates readings of the troposphere from those of another atmospheric layer above, which have disguised the true troposphere temperature trend.

"This tells us very clearly what the lower atmosphere temperature trend is, and the trend is very similar to what is happening at the surface," said Qiang Fu, a UW associate professor of atmospheric sciences.


He is lead author of a paper documenting the work published in the May 6 edition of the journal Nature. Co-authors are Celeste Johanson, a UW research assistant and graduate student in atmospheric sciences; Stephen Warren, a UW professor of atmospheric sciences and Earth and space sciences; and Dian Seidel, a research meteorologist with the National Oceanic and Atmospheric Administration’s Air Resources Laboratory in Silver Spring, Md.

The team examined measurements from devices called microwave-sounding units on NOAA satellites from January 1979 through December 2001. The satellites all used similar equipment and techniques to measure microwave radiation emitted by oxygen in the atmosphere and determine its temperature.

Different channels of the microwave-sounding units measured radiation emitted at different frequencies, thus providing data for different layers of the atmosphere. In the case of the troposphere – which extends from the surface to an altitude of about 7.5 miles – it was believed there was less warming than what had been recorded at the surface.

The troposphere temperature was measured by channel 2 on the microwave sounding units, but those readings were imprecise because about one-fifth of the signal actually came from a higher atmospheric layer called the stratosphere.

"Because of ozone depletion and the increase of greenhouse gases, the stratosphere is cooling about five times faster than the troposphere is warming, so the channel 2 measurement by itself provided us with little information on the temperature trend in the lower atmosphere," Fu said.

Stratosphere temperatures are measured by channel 4 on the microwave units. Fu’s team used data from weather balloons at various altitudes to develop a method in which the two satellite channels could be employed to deduce the average temperature in the troposphere. The scientists correlated the troposphere temperature data from balloons with the simulated radiation in the two satellite channels to determine which part of the channel 2 measurement had come from the cooling stratosphere and should be removed.

What remained indicated that the troposphere has been warming at about two-tenths of a degree Celsius per decade, or nearly one-third of a degree Fahrenheit per decade. That closely resembles measurements of warming at the surface, something climate models have suggested would result if the warmer surface temperatures are the result of greenhouse gases. The previous lack of demonstrable warming in the troposphere has prompted some to argue that climate models are missing unrecognized but important physical processes, or even that human-caused climate change is not happening.

One reason previous data have not shown enough warming in the troposphere, Fu said, is because the stratosphere influence on the channel 2 temperature trend has never been properly quantified, even though there have been attempts to account for its influence. Those attempts had large uncertainties, so many researchers had simply used the unadjusted channel 2 temperature trends to represent the temperature trends in the middle of the troposphere.

Fu’s work is supported by the U.S. Department of Energy, the National Science Foundation and the National Aeronautics and Space Administration.

The findings, he said, could offer a new context for climate change discussion.

"I think everyone can understand our approach," he said. "I think this could convince not just scientists but the public as well."


For more information, contact Fu at 206-685-2070 or qfu@atmos.washington.edu

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu/

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>