Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tornadoes, lightning and hurricanes: scientists at Alabama research center study severe weather

29.04.2004


Scientists at the National Space Science and Technology Center (NSSTC) in Huntsville, Ala., are using information gleaned from NASA satellites, aircraft and field research to better understand dynamics behind tornadoes, lightning, hurricanes and other destructive forces of nature.


Based at the National Space Science and Technology Center (NSSTC) in Huntsville, Ala., Tony Kim and Dr. Richard Blakeslee of NASA’s Marshall Space Flight Center in Huntsville test aircraft sensors used to measure the electric fields produced by thunderstorms as part of NASA’s Altus Cumulus Electrification Study (ACES). In addition to aircraft, NSSTC scientists use information gleaned from NASA satellites and field research to better understand dynamics behind lightning, tornadoes hurricanes and other destructive forces of nature.

The NSSTC is a partnership with the Marshall Center, Alabama universities, industry and federal agencies. It enables scientists, engineers and educators to share research and facilities, focusing on space science, Earth sciences, materials science, biotechnology, propulsion, information technology and optics. (NASA/Marshall/Doug Stoffer)



"A better understanding of severe weather can help people year-round," said Dr. Tim Miller of the Global Hydrology and Climate Center (GHCC) in Huntsville. "The Center is conducting a variety of unique research projects that could someday help forecasters better predict and prepare the public for severe weather."

The GHCC is one of seven research centers at the National Space Science and Technology Center. Center scientists have played leadership roles in better understanding tornadoes, lightning, hurricanes and other natural phenomenon.


Sometimes, researchers have found, one dangerous element of severe weather is a key to understanding another. Using a combination of ground- and space-based weather monitoring equipment, NSSTC scientists have documented dozens of cases in which lightning rates increased dramatically as severe storms developed. This offers an early clue for weather forecasters to take a more detailed look at other storm characteristics with radar -- and perhaps a chance for them to get warnings out earlier, saving more lives.

Other research answers the question of where lightning is more likely to occur. A map created in 2001 by National Space Science and Technology Center scientists offered the first animated glimpse of annual lightning activity worldwide.

Compiled using satellite data, each frame of the animation represents the average lightning activity worldwide on a single day of the year. The map shows that lightning avoids the ocean, but frequently strikes in Florida. It’s likely to strike in the Himalayas and even more so in central Africa. The animated maps also clearly show how lightning-producing storms are caused by the Sun’s daily heating of Earth’s surface and atmosphere. This was the first time scientists mapped the global distribution of lightning, noting variations by latitude, longitude, day of year and time of day.

In another first, to better understand both the causes of an electrical storm’s fury and its effects on our home planet, NSSTC scientists in 2002 used a tool no atmospheric scientist had ever used before to study lightning — a remotely piloted aircraft, commonly called an uninhabited aerial vehicle or "UAV." This marked the first time an uninhabited aerial vehicle was used to conduct lightning research.

This project, called the Altus Cumulus Electrification Study, united researchers from NASA, universities and industry. By chasing down thunderstorms in Florida using the remotely piloted aircraft, the scientists achieved dual goals — gathering weather data safely and testing new aircraft technology.

Such studies have the potential to help forecasters improve weather prediction, especially for storms that may produce severe weather. And, by learning more about these individual storms, scientists hope to better understand weather on a global scale.

Sometimes, the greatest barrier to more detailed forecasts is the amount and quality of data available to forecasters. Researchers at the center are collaborating with other agencies to change that.

A new generation of weather satellites, to be launched around 2011 by National Oceanic and Atmospheric Administration, will carry advanced sensors capable of producing higher-resolution images than today’s satellites. A sharper, richer picture of the ever-changing atmosphere — available to forecasters in near real-time — will bring a new level of detail and accuracy to short-term forecasts.

But in the meantime, sensors of this caliber are already in orbit aboard NASA’s newest climate research satellites, Terra and Aqua. Supported by scientists at the National Space Science and Technology Center, collaboration between the National Weather Service and NASA is laying the foundation for using new satellite technology right now.

Known as Short-term Prediction Research and Transition, or SPoRT, the program uses data from a sensor called MODIS — or MODerate-resolution Imaging Spectrometer — aboard NASA satellites. MODIS gleans between 16 and 100 times more detail than current weather satellites, giving researchers a head start in incorporating highly detailed data into weather forecasts.

The NSSTC is also home to hurricane researchers who helped lead a series of field research investigations called Convection And Moisture Experiments, or CAMEX. Sponsored by the Earth Science Enterprise at NASA Headquarters in Washington, the most-recent CAMEX mission in 2001 united researchers from 10 universities, five NASA centers and the National Oceanic and Atmospheric Administration.

Armed with airplanes, satellite observations, ground-based radar and a fleet of other sophisticated instruments, the researchers met the potentially deadly and destructive storms head-on, gathering data vital to improve hurricane modeling and prediction.

Monitoring storms simultaneously from near sea level to 65,000 feet, the researchers monitored temperature, pressure, humidity, precipitation, wind speed, lightning and ice crystal sizes.

NSSTC researchers are currently using this information to identify hurricane precipitation and cloud electrical field patterns and to study how they relate to hurricane intensity. They are also studying how the characteristics of a landfalling hurricane are changed once the storm begins to interact with the coastline. Together, lessons learned from these studies have the potential to lead to more accurate interpretations of satellite information and methods for using this information for hurricane intensity forecasting.

The National Space and Technology Center is a partnership among NASA’s Marshall Space Flight Center in Huntsville, Alabama research universities, industry and other federal agencies.

Steve Roy | MSFC
Further information:
http://www.msfc.nasa.gov/news/NSSTC/news/releases/2004/N04-005.html

More articles from Earth Sciences:

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

nachricht Artificial Glaciers in Response to Climate Change?
10.08.2018 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>