Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellites Act As Thermometers In Space, Show Earth Has A Fever

22.04.2004


Like thermometers in space, satellites are taking the temperature of the Earth’s surface or skin. According to scientists, the satellite data confirm the Earth has had an increasing "fever" for decades.


Global land surface temperature, July 2003

This image shows land surface temperature for the entire month of July 2003, one of the warmest months on record throughout much of Europe. This image was derived using data from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Credit: NASA


July Temperatures 1982-1998

This map shows averaged land surface temperature for the month of July from the years 1982 through 1998. The image was derived using data from the National Oceanographic and Atmospheric Association’s (NOAA) Advanced Very High Resolution Radiometer sensor. Temperatures are in degrees Kelvin. Credit: NASA/NOAA



For the first time, satellites have been used to develop an 18- year record (1981-1998) of global land surface temperatures. The record provides additional proof that Earth’s snow-free land surfaces have, on average, warmed during this time period, according to a NASA study appearing in the March issue of the Bulletin of the American Meteorological Society. The satellite record is more detailed and comprehensive than previously available ground measurements. The satellite data will be necessary to improve climate analyses and computer modeling.

Menglin Jin, the lead author, is a visiting scientist at NASA’s Goddard Space Flight Center, Greenbelt, Md., and a researcher with the University of Maryland, College Park, Md. Jin commented until now global land surface temperatures used in climate change studies were derived from thousands of on-the- ground World Meteorological Organization (WMO) stations located around the world, a relatively sparse set of readings given Earth’s size. These stations actually measure surface air temperature at two to three meters above land, instead of skin temperatures. The satellite skin temperature dataset is a good complement to the traditional ways of measuring temperatures.


A long-term skin temperature data set will be essential to illustrate global as well as regional climate variations. Together with other satellite measurements, such as land cover, cloud, precipitation, and sea surface temperature measurements, researchers can further study the mechanisms responsible for land surface warming.

Furthermore, satellite skin temperatures have global coverage at high resolutions, and are not limited by political boundaries. The study uses Advanced Very High Resolution Radiometer Land Pathfinder data, jointly created by NASA and the National Oceanic and Atmospheric Administration (NOAA) through NASA’s Earth Observing System Program Office. It also uses recently available NASA Moderate Resolution Imaging Spectroradiometer skin temperature measurements, as well as NOAA TIROS Operational Vertical Sounder (TOVS) data for validation purposes. All these data are archived at NASA’s Distributed Active Archive Center.

Inter-annually, the 18-year Pathfinder data in this study showed global average temperature increases of 0.43 Celsius (C) (0.77 Fahrenheit (F)) per decade. By comparison, ground station data (2 meter surface air temperatures) showed a rise of 0.34 C (0.61 F) per decade, and a National Center for Environmental Prediction reanalysis of land surface skin temperature showed a similar trend of increasing temperatures, in this case 0.28 C (0.5 F) per decade. Skin temperatures from TOVS also prove an increasing trend in global land surface temperatures. Regional trends show more temperature variations.

"Although an increasing trend has been observed from the global average, the regional changes can be very different," Jin said. "While many regions were warming, central continental regions in North America and Asia were actually cooling."

One issue with the dataset is that it cannot detect surface temperatures over snow. In winter, most of the land areas in the mid to upper latitudes of the Northern Hemisphere are covered by snow. Of Earth’s land area, 90 percent of it is snow free in July, compared to only 65 percent in January. For this reason, the study only focused on snow free areas. Still, in mountainous areas that are hard to monitor, like Tibet, satellites can detect the extent of snow coverage and its variations.

The satellite dataset allows researchers to also look at daily trends on global and regional scales. The largest daily variation was above 35.0 C (63 F) at tropical and sub-tropical desert areas for a July 1988 sample, with decreasing daily ranges towards the poles, in general. Daily changes were also closely related to vegetation cover. The daily skin temperature range showed a decreasing global mean trend over the 18-year period, resulting from greater temperature increases at night compared to daytime.

Things like clouds, volcanic eruptions, and other factors gave false readings of land temperatures, but scientists factored those out to make the skin temperature data more accurate. Scientists are considering extending this 18-year satellite- derived skin temperature record up to 2003. The mission of NASA’s Earth Science Enterprise is to develop a scientific understanding of the Earth system and its response to natural or human-induced changes to enable improved prediction capability for climate, weather, and natural hazards. NASA funded the study.

Krishna Ramanujan | GSFC
Further information:
http://www.gsfc.nasa.gov/topstory/2004/0315skintemp.html

More articles from Earth Sciences:

nachricht New insight into glaciers regulating global silicon cycling
14.08.2019 | University of Bristol

nachricht Coastal marine sediments contribute to the formation of greenhouse gases
31.07.2019 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Working out why plants get sick

16.08.2019 | Life Sciences

Newfound superconductor material could be the 'silicon of quantum computers'

16.08.2019 | Physics and Astronomy

Stanford develops wireless sensors that stick to the skin to track our health

16.08.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>