Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effects of Ocean Fertilization with Iron to Remove Carbon Dioxide from the Atmosphere Reported

19.04.2004


Dumping iron in the ocean is known to spur the growth of plankton that remove carbon dioxide, a greenhouse gas, from the atmosphere, but a new study indicates iron fertilization may not be the quick fix to climate problems that some had hoped.


US Coast Guard Cutter Polar Star was one of the three ships participating in the SOFeX Cruise. Photo By: Leah Houghton, WHOI


Potential long-term outcomes for iron fertilization of the ocean are unknown, and could include newly productive fisheries and reduced atmospheric carbon dioxide (left) or polluted ocean, unenhanced fisheries, and litte effect on atmospheric carbon dioxide (right). Jack Cook, WHOI Graphics



Scientists have quantified the transport of carbon from surface waters to the deep ocean in response to fertilizing the ocean with iron, an essential nutrient for marine plants, or phytoplankton. Prior work suggested that in some ocean regions, marine phytoplankton grow faster with the addition of iron, thus taking up more carbon dioxide. However, until now, no one has been able to accurately quantify how much of the carbon in these plants is removed to the deep ocean.

New data, reported in the April 16 issue of the journal Science, suggest that there is a direct link between iron fertilization and enhanced carbon flux and hence atmospheric carbon dioxide levels, but that the quantities that can be removed are no greater than natural plankton blooms and are not large enough to serve as a quick fix to our climate problems.


Results from the largest ocean fertilization experiment to date, the Southern Ocean Iron Experiment (SOFeX), are reported in three related articles in Science. Ken Buesseler and coauthors John Andrews, Steven Pike and Matthew Charette of Woods Hole Oceanographic Institution’s Marine Chemistry and Geochemistry Department reported their findings on ocean carbon fluxes in one of the articles, and Buesseler is a coauthor on a second article.

SOFeX was conducted using three ships in January and February 2002 at two sites in the Southern Ocean, the oceans surrounding Antarctica. More than 100 scientists were involved with the international, US-led effort, funded by the National Science Foundation with additional support from the Department of Energy.

The 2002 study focused on two areas of 15 square kilometers (about 10 square miles) in the Southern Ocean between Antarctica and New Zealand. The sites were chosen to represent contrasting ecological and chemical conditions in the Southern Ocean. Just over one metric ton (2,200 pounds) of iron was added to surface waters to stimulate biological growth at the southern site that Buesseler studied. Scientists aboard the three ships observed the biological patch for 28 days and measured the amount of carbon being transported deeper into the ocean in the form of sinking particulate organic carbon.

Buesseler and colleagues quantified for the first time how much carbon was being removed in response to iron from surface waters to depths of 100 meters (about 300 feet), which they estimated at 1,800 tons (about 4 million pounds) for an area of 400 square miles. They were surprised to find that particles were being carried to the deep sea more efficiently in response to the addition of iron, but noted that this carbon flux is still quite low compared to natural variations at these latitudes.

The controversial idea of fertilizing the ocean with iron to remove carbon dioxide from the atmosphere gained momentum in the 1980s. Climate and ocean scientists, as well as ocean entrepreneurs and venture capitalists, saw potential for a low-cost method for reducing greenhouse gases and possibly enhancing fisheries . Plankton take up carbon in surface waters during photosynthesis, creating a bloom that other animals feed upon. Carbon from the plankton is integrated into the waste products from these animals and other particles, and settles to the seafloor as "marine snow" in a process called the "biological pump." Iron added to the ocean surface increases the plankton production, so in theory fertilizing the ocean with iron would mean more carbon would be removed from surface waters to the deep ocean. Once in the deep ocean, the carbon would be "sequestered" or isolated in deep waters for centuries. The oceans already remove about one third of the carbon dioxide released each year due to human activities, so enhancing this ocean sink could in theory help control atmospheric carbon dioxide levels and thus regulate climate.

Three previous open-ocean fertilization experiments have been conducted in the Southern Ocean. The 13-day Southern Ocean Iron Enrichment Experiment (SOIREE) in 1999, the 21-day Eisen or Iron Experiment (EisenEx-1) in 2000 and the 2002 Southern Ocean Iron Experiment (SOFeX) all produced significant increases in planktonic biomass and decreases in dissolved inorganic carbon in the water column. Last month, a European group returned from EIFEX (European Iron Fertilization Experiment), another iron fertilization experiment in the Southern Ocean.

However, there was limited evidence until now that the particles carried significant quantities of carbon to the deep ocean.

Buesseler participated in several of these experiments, and studies thorium, a naturally occurring element that is "sticky" by nature and serves as an easy-to-measure proxy for carbon export in seawater. Recent thorium experiments show that many factors affect carbon uptake by plankton in surface waters. For example, biological communities and plankton production vary with location and season, so the balance between carbon uptake by the marine plants and carbon export on sinking particles is highly variable and typically only a few percent of the carbon sinks to the deep ocean.

Buesseler and his colleagues say that simply adding iron to the ocean may not result in enhanced removal of carbon dioxide from surface waters to the deep ocean. "You would have to keep doing it over, and if you wanted to have a big impact the size of the area required is bigger than the Southern Ocean. And even if you could do it, what effect might it have on other aspects of ocean ecology? This remains an unknown."

WHOI is a private, independent marine research and engineering, and higher education organization located in Falmouth, MA. Its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the ocean’s role in the changing global environment. Established in 1930 on a recommendation from the National Academy of Sciences, the Institution is organized into five scientific departments, interdisciplinary research institutes and a marine policy center, and conducts a joint graduate education program with the Massachusetts Institute of Technology.

Shelley Dawicki | WHOI
Further information:
http://www.whoi.edu/media/buesseler_iron_fertilization.html

More articles from Earth Sciences:

nachricht Arctic sea ice decline driving ocean phytoplankton farther north
16.10.2018 | American Geophysical Union

nachricht Smaller, more frequent eruptions affect volcanic flare-ups
12.10.2018 | Michigan Technological University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Robot-assisted sensor system for quality assurance of press-hardened components

17.10.2018 | Trade Fair News

Sensory Perception Is Not a One-Way Street

17.10.2018 | Life Sciences

Plant Hormone Makes Space Farming a Possibility

17.10.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>