Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Minerals are key to earthquakes deep in the Earth

01.04.2004


A team of geologists can tell you more about earthquakes in "Middle Earth" than can the whole trilogy of "The Lord of the Rings."



Specifically, how do earthquakes happen in Earth’s tightly squeezed middle layers where pressure is far too great to allow any shifting of the rock? According to a paper published in the April 1 issue of the journal Nature, breakdown of the mineral serpentine provides enough wiggle room to trigger an earthquake. The report suggests a new mechanism to explain how quakes can occur at such depths.

"This exciting work addresses the central question of how large earthquakes can be generated in deep subduction zones," said Robin Reichlin, program director in the National Science Foundation (NSF) division of earth sciences, which funded the research. "This has been a much-debated topic, and this work goes a long way toward showing that dehydration of minerals plays an important role in this process."


Haemyeong Jung, Harry W. Green II and Larissa Dobrzhinetskaya of the University of California at Riverside, point out that while it is impossible to break anything by normal brittle fracture at pressures higher than those found at only a few 10s of kilometers (km) deep, earthquakes occur continuously at depths close to 700 km.

What is the explanation of this paradox?

A mechanism called "dehydration embrittlement" breaks down the mineral serpentine, to form the mineral olivine, accompanied by the release of water. That water can assist brittle failure at high pressure, but how? Green explains that before now, scientists have expected faulting instability only if the volume change during serpentine breakdown is positive.

In their article, the team reports experiments conducted between 10,000 and 60,000 times the pressure of the atmosphere at sea level, corresponding to depths in the earth of 30-190 km. Over that pressure range, the volume upon dehydration of serpentine changes from strongly positive to markedly negative, yet the faulting instability remains.

The microstructures preserved in the rocks after faulting provide insight into why this is so. The results confirm that earthquakes can be triggered by serpentine breakdown down to depths of as much as 250 km.

"I am becoming more and more convinced that mineral reactions also are involved in triggering shallow earthquakes such as those that threaten California," Green said. "Our hope is that we learn more about the thing we know least about, the initiation part of these earthquakes, how they get started. This is what we are trying to understand."


Additional Contacts:
NSF Program Contact: Robin Reichlin, rreichli@nsf.gov, 703-292-8550
UC-RiversideContact: Kris Lovekin, kris.lovekin@ucr.edu, 909-787-2495

NSF is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.58 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 40,000 competitive requests for funding, and makes about 11,000 new funding awards. NSF also awards over $200 million in professional and service contracts yearly.

Receive official NSF news electronically through the e-mail delivery system, NSFnews. To subscribe, send an e-mail message to join-nsfnews@lists.nsf.gov. In the body of the message, type "subscribe nsfnews" and then type your name. (Ex.: "subscribe nsfnews John Smith")

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov
http://www.nsf.gov/od/lpa/news/media/start.htm

More articles from Earth Sciences:

nachricht Geomagnetic jerks finally reproduced and explained
23.04.2019 | CNRS

nachricht "Flight recorder" of rocks within the Earth’s crust
16.04.2019 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Proteins stand up to nerve cell regression

24.04.2019 | Life Sciences

New sensor detects rare metals used in smartphones

24.04.2019 | Life Sciences

Controlling instabilities gives closer look at chemistry from hypersonic vehicles

24.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>