Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative study clarifies evolutionary history of early complex single-celled organisms

29.03.2004


A billion years ago (the Neoproterozoic age), complex single-celled organisms, the acritarchs, began to develop, grow, and thrive. Almost a billion years later, the study of the evolutionary history of acritarchs began to bog down amid inconsistencies in the reporting of the diversity of species. Now, a Virginia Tech graduate student has devised a new way to study the ebb and flow of life in the Neoproterozoic and Early Cambrian ages, a period that includes two mass extinctions.



John Warren Huntley of Asheville, N.C., a PhD. student in geosciences, will report on his strategy and results at the joint meeting of the Northeastern and Southeastern Sections of the Geological Society of America, to be held March 25-27 in Tysons Corner, Va.

"The evolutionary history of acritarchs reported in the literature has been based on the number of species," explains Huntley. "But there have been many workers collecting information and there is variation among these researchers on what is considered a species. This variation among workers could alter our understanding of what actually happened."


The strategy of a group of geoscientists at Virginia Tech is to use the quantitative data reported in the scientific literature to look at size and morphological complexity of specimens collected. So far, they have examined acritarch data spanning more than 700 million years – from 1270-million-year-old rocks deposited long before Neoproterozoic ice ages, to Early Cambrian successions rocks deposited during the explosive evolution of early animals.

"Our preliminary results seem to confirm previous anecdotal evidence," says Huntley. "We’re finding that complexity increases through time, which is to be expected." However, complexity leveled off. "It appears that morphological complexity may have remained steady at high values, even when species diversity was fluctuating greatly," Huntley says.

As to size, there was a steady increase in size for at least 500 million years, until the Ediacaran extinction, after which acritarchs remained very small compared to their pre-Ediacaran extinction size. "There had been anecdotal observations of the size change, which we have now quantified," Huntley says.

Huntley will present the paper, "Secular patterns in morphological disparity and body size of acritarchs through the Neoproterozoic and early Cambrian" (47-2) at 1:20 p.m. Friday, March 26, as part of the session on Pre-Cenozoic Paleontology in the Gunston A room at the Hilton McLean-Tysons Corner hotel. Co-authors are Virginia Tech geosciences professors Shuhai Xiao and Michal Kowalewski.

The trio began their study of acritarchs last October. "It is interesting to use novel techniques to study early life and this is a good opportunity to increase my knowledge in this important area, " says Huntley, who has been studying mollusk evolution.

Huntley received his bachelor’s degree from Appalachian State University and his master’s degree from the University of North Carolina at Wilmington.


Contact for more information:
John Warren Huntley, 540-231-1913 or jhuntley@vt.edu
Michal Kowalewski (Huntley’s major professor) michalk@vt.edu 540-231-5951
Shuhai Xiao, xiao@vt.edu, 540-231-1366

Susan Trulove | EurekAlert!
Further information:
http://www.technews.vt.edu/

More articles from Earth Sciences:

nachricht Massive organism is crashing on our watch
18.10.2018 | S.J. & Jessie E. Quinney College of Natural Resources, Utah State University

nachricht Arctic sea ice decline driving ocean phytoplankton farther north
16.10.2018 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

RUDN chemist tested a new nanocatalyst for obtaining hydrogen

18.10.2018 | Life Sciences

Massive organism is crashing on our watch

18.10.2018 | Earth Sciences

Electrical enhancement: Engineers speed up electrons in semiconductors

18.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>