Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Permafrost Becomes Insecure

29.03.2004


Russian scientists have discovered territories in the North that will run the greatest risk in the course of permafrost thawing, they have also calculated degree of risk for towns, industrial facilities and main lines.



Global climate warming makes attacks on permafrost. Accurate forecast is very important as the permafrost ground status would drive the future of all northern towns and industrial facilities. Researchers of the State Hydrological Institute (St. Petersburg) have undertaken such a forecast. Their effort resulted in prognostic maps, where the higher risk zone was determined along the Arctic coast and degree of risk for towns, main lines, pipelines and other infrastructures of the North were calculated.

The researchers used several climate change scenarios based on five mathematical models to forecast the spread area, temperature and depth of seasonal permafrost thawing through. According to their estimates, reduction of the entire permafrost area in the northern hemisphere will make 10% to 18% by 2030, 15% to 25% by 2050 and 25% to 50% by 2080. The depth of seasonal thawing through will increase heterogeneously both in terms of timescale and space. In the next thirty years to come, the changes will be relatively insignificant but by mid-century the depth of thawing through will increase by 15% to 25% and more, and by 2080 - by 30% to 50%. Therefore, it can be expected by the end of the 21st century that the permafrost zone will reduce by half, and the depth of seasonal thawing through will double.


It is not enough to calculate the extent the permafrost reduction, the most important is to determine the affect on its bearing strength. The “cryopedology risk index” serves this purpose, the index being computational by definite formula.

Having applied this formula to the northern territories of Russia, the scientists discovered that the high cryopedology risk zone covers all of the Arctic coast, where extensive coast erosion will take place. The high risk zone includes towns and settlements - Salekhard, Igarka, Dudinka, Tiksi in Russia, and Barrow and Inuvik in the USA, pipelines and installations of the gas production system Nadym-Pur-Taz in the North-West of Siberia. Yakutsk, Norilsk, Vorkuta, major part of Trans-Siberian and Baikal-Amur main lines run moderate risk. Natural and man-caused calamities can be prevented in these locations only through purposeful investments aimed to support infrastructures of the North.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Earth Sciences:

nachricht Wintertime Arctic sea ice growth slows long-term decline: NASA
07.12.2018 | NASA/Goddard Space Flight Center

nachricht Why Tehran Is Sinking Dangerously
06.12.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>