Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oceans’ acidity influences early carbon dioxide and temperature link estimates

17.03.2004


An international team of geoscientists believes that carbon dioxide, and not changes in cosmic ray intensity, was the factor controlling ancient global temperatures. The new findings resulted from the researchers inclusion of the ocean’s changing acidity in their calculations.



"Reviewing the geologic records of carbon dioxide and glaciations, we found that carbon dioxide was low during periods of long-lived and widespread continental glaciations and high during other, warmer periods," says Dr. Dana L. Royer, research associate in geosciences at Penn State. "Previous suggestions that cosmic ray flux correlated better with ancient temperatures than carbon dioxides do not appear true. While cosmic ray flux may be of some climatic significance, it is likely of second-order importance on a multimillion year timescale."

The researchers looked at climate changes that occurred over the past 570 million years. A direct record of global temperature and carbon dioxide exists for the past 100 years and ice cores provide carbon dioxide information for the past 400,000 years. However, for the remainder of the years, there are no direct measurements.


"A close correspondence between carbon dioxide and temperature has generally been found for the past 570 million years," says Royer. Scientists typically use proxies to determine carbon dioxide and temperatures in the distant past. Oxygen isotope ratios in shallow marine carbonate fossils were used by some researchers to determine surface water temperatures, and this indicated that carbon dioxide and temperature were not correlated, but that cosmic ray fluxes were correlated to temperature. Other proxies can determine carbon dioxide concentrations in both the atmosphere and the oceans.

Royer, working with Robert A. Berner, The Alan M. Bateman professor of geology and geophysics, Yale University; Isabel P. Montanez, professor of geology, University of California Davis; Neil J. Tabor, research associate, Southern Methodist University; and David J. Beerling, professor of animal and plant sciences, University of Sheffield, U.K., compared the results of a variety of carbon dioxide proxies to a model, GEOCARB III, that predicts carbon dioxide over time by tracking carbon entering and leaving the atmosphere. "Proxy estimates of paleo carbon dioxide agree, within modeling errors with GEOCARB model results," the researchers reported in the March issue of GSA Today.

The researchers also found good correlation between low levels of carbon dioxide in the atmosphere and the presence of extensive continental glaciations.

However, the proxy for temperature obtained from shallow oceanic carbonate deposits did not correlate well with the other temperature proxies or the carbon dioxide estimates.

"The acidity of the oceans changes depending on the amount of carbon dioxide in the atmosphere and the amounts of calcium and calcium carbonate in the water," says Royer. "When corrected for acidity, the temperature curve matches the glacial record much better."

The researchers applied correction factors for changes in acidity due to changes in carbon dioxide alone, changes in calcium ions in the water and carbon dioxide in the atmosphere and also for changes in calcium ions, carbon dioxide and calcium carbonate saturation of the water. The corrected temperature curves correctly predicted two major glaciations, one around 300 million years ago and one 30 million years ago. The cosmic ray flux does predict these glaciations, but also predicts cold temperatures when there is no evidence for ice.

"The global temperatures inferred from the cosmic ray flux model do not correlate with the temperature record determined from oxygen isotopes in shallow marine carbonate fossils, when these estimates were corrected for past changes in oceanic acidity," says the Penn State researcher.


The U.S. Department of Energy and the National Science Foundation supported this research.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Earth Sciences:

nachricht Boreal forest fires could release deep soil carbon
22.08.2019 | NASA/Goddard Space Flight Center

nachricht An Ice Age savannah corridor let large mammals spread across Southeast Asia
22.08.2019 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hamburg and Kiel researchers observe spontaneous occurrence of skyrmions in atomically thin cobalt films

Since their experimental discovery, magnetic skyrmions - tiny magnetic knots - have moved into the focus of research. Scientists from Hamburg and Kiel have now been able to show that individual magnetic skyrmions with a diameter of only a few nanometres can be stabilised in magnetic metal films even without an external magnetic field. They report on their discovery in the journal Nature Communications.

The existence of magnetic skyrmions as particle-like objects was predicted 30 years ago by theoretical physicists, but could only be proven experimentally in...

Im Focus: Physicists create world's smallest engine

Theoretical physicists at Trinity College Dublin are among an international collaboration that has built the world's smallest engine - which, as a single calcium ion, is approximately ten billion times smaller than a car engine.

Work performed by Professor John Goold's QuSys group in Trinity's School of Physics describes the science behind this tiny motor.

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Making small intestine endoscopy faster with a pill-sized high-tech camera

23.08.2019 | Medical Engineering

More reliable operation offshore wind farms

23.08.2019 | Power and Electrical Engineering

Tracing the evolution of vision

23.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>