Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon found to be older than the Solar System

27.02.2004


For the first time, researchers have identified organic material in interplanetary dust particles (IDPs), gathered from the Earth’s stratosphere, that was made before the birth of our Solar System.



The material was identified on the basis of its carbon isotopic composition, which is different from the carbon found on Earth and in other parts of the Solar System. Isotopes are variations of elements that differ from each other in the number of neutrons they have, making them similar chemically but different physically.

Christine Floss, Ph.D., senior research scientist in Earth and Planetary Sciences and Physics at Washington University in St. Louis, said that the organic material in the IDP she and her colleagues analyzed probably was formed in molecular clouds in the interstellar medium before the formation of the Solar System. The isotopic anomalies are produced by chemical fractionation at the very low temperatures found in these molecular clouds.


"Our findings are proof that there is presolar organic material coming into the Solar System yet today," Floss said. "This material has been preserved for more than 4.5 billion years, which is the age of the Solar System. It’s amazing that it has survived for so long."

The finding helps in understanding the Solar System’s formation and the origin of organic matter on Earth. The work was published in the Feb. 27, 2004 issue of Science, and was supported by NASA grants.

Over the past 20 years, researchers have found isotopic anomalies in nitrogen and hydrogen from IDPs but never before in carbon. Floss said one of the reasons for this was the limitations of earlier instruments. She and her colleagues used a new type of ion microprobe called the NanoSIMS, which enables researchers to analyze particles at much greater spatial resolution and higher sensitivity than before. Until recently, ion probes could only measure the average properties of an IDP. In 2000, with help from NASA and the National Science Foundation, the University bought the first commercially available NanoSIMS. Made by Cameca in Paris, the NanoSIMS can resolve particles as small as 100 nanometers in diameter. A hundred thousand such particles side-by-side would make a centimeter. Typical sub-grains in IDPs range from 100 nanometers to 500 nanometers.

"The question has always been: Why don’t we see any unusual carbon isotopic compositions?" Floss said. "The thinking was if the nitrogen and hydrogen isotopic anomalies are formed in the same regions of space, it was logical to expect unusual carbon isotopic compositions as well. One school of thought was that there were different fractionation processes with carbon in opposite directions, that cancelled out any anomalies produced. Another possibility was that the nitrogen and hydrogen might have been produced in phases that weren’t originally organic – that the organic material itself was formed in the solar system and basically inherited the hydrogen and nitrogen isotopic compositions from some precursor material. But our isotopic analysis shows that the organic material was formed before the Solar System existed and was later incorporated into the IDP."

Floss and Frank Stadermann, Ph.D., Washington University senior research scientist in Physics, worked with colleagues at Lawrence Livermore National Laboratory in drawing their conclusions.

"A lot of IDPs come from comets," Floss said. "It makes sense that organic material would be preserved in a very cold environment, such as where comets form at the edge of the Solar System. For something to stay this pristine and primitive, one can assume that it came from that kind of environment."

Floss said it’s estimated that, over a million years, about a centimeter of carbonaceous material comes in the form of such cosmic dust and a significant amount of that material may be presolar in origin.

Floss said that her work builds on the pioneering work of the late Robert Walker, Ph.D., professor of Physics at Washington University. Walker was instrumental in the acquisition of the NanoSIMS and in the 1980s made landmark studies verifying the extraterrestrial origin of such stratospheric dust particles.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Earth Sciences:

nachricht Geomagnetic jerks finally reproduced and explained
23.04.2019 | CNRS

nachricht "Flight recorder" of rocks within the Earth’s crust
16.04.2019 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>