Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA’s SORCE satellite celebrates one year of operations

20.02.2004


Having marked its first anniversary on orbit, NASA’s Solar Radiation and Climate Experiment (SORCE) satellite has hit its stride. In concert with other satellites, SORCE’s observations of the sun’s brightness are helping researchers better understand climate change, climate prediction, atmospheric ozone, the sunburn-causing ultraviolet-B radiation and space weather.


SORCE SPACECRAFT

SORCE maintains a 24-year legacy of solar output monitoring that should help explain and predict the effect of the Sun on the Earth’s atmosphere and climate. Credit: NASA / LASP



In fall 2003, SORCE was fortunate to see and measure exceptionally high levels of the sun’s activities. In late October and November the sun sent solar flares and coronal mass ejections hurtling Earthward, disrupting satellites and other transmissions, triggering an intense geomagnetic storm, and enabling sightings of the northern lights as far south as Arkansas, Texas and Oklahoma.

The third most powerful solar flare ever observed in X-rays, high-energy photons with very short wavelengths, erupted from Sunspot 486 October 28, 2003, at approximately 6 a.m. Eastern Standard Time. The same spot released a large X11 flare on the afternoon of October 29. As the sunspot moved across the face of the sun, total solar brightness decreased by 0.3 percent.


SORCE tracked the decreases in Total Solar Irradiance (TSI) and the increases in X-rays, as well as changes in the other parts of the solar spectrum. SORCE’s suite of instruments measures solar brightness in soft X-ray bands and at wavelengths from ultraviolet through the visible and near-infrared spectrum. This is the most comprehensive dataset ever collected of the complex brightness changes that occur in the solar spectrum during a major eruptive event.

Having accurate knowledge of the sun’s brightness variations on all time scales, from flares to centuries, at all wavelengths heating the Earth’s atmosphere, land and oceans is essential to understand, model and predict impacts of the sun on Earth.

Two of the SORCE instruments, the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM), will ultimately be part of the operational measurements made by the National Polar-orbiting Operational Environmental Satellite System (NPOESS) satellites beginning in 2013. Solar irradiance has been monitored since the 1970s to create a long-term record for study by researchers.

"The spacecraft and instruments have all been performing beautifully since launch, and the new solar data exceed all of our expectations," said Gary Rottman, SORCE Principal Investigator at University of Colorado’s Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado. "The sun also cooperated by putting on an unusual display of intense activity in late October that provided some of the largest sunspots ever recorded and produced major flares surpassing all previous observations. These unexpected phenomena will help us better understand how the sun functions and how it influences the terrestrial environment."

"For the very first time we have observations capable of characterizing simultaneously the variations in the total solar irradiance and in the visible and near infrared part of the solar electromagnetic spectrum that provides the primary energy to the Earth’s surface," said Dr. Judith Lean, Research Physicist at the Naval Research Laboratories and a member of the National Academy of Sciences. "Simple models exist of solar spectrum variability, which general circulation models use to simulate climate response to solar forcing. SORCE data already indicate the models need to be revised at infrared wavelengths; they promise unprecedented new understanding of the mechanisms of solar spectral-irradiance variability and their possible climatic impacts."

SORCE is a joint partnership between NASA and LASP. As a principal investigator-led mission, NASA provided management oversight and engineering support. Scientists and engineers at the University of Colorado designed, built, calibrated and tested the four science instruments on the satellite. The Mission Operations Center and the Science Operations Center are both located at the University.

Lynn Chandler | GSFC
Further information:
http://www.gsfc.nasa.gov/topstory/2004/0219sorce.html

More articles from Earth Sciences:

nachricht Mineral discoveries in the Galapagos Islands pose a puzzle as to their formation and origin
19.10.2018 | Johannes Gutenberg-Universität Mainz

nachricht Massive organism is crashing on our watch
18.10.2018 | S.J. & Jessie E. Quinney College of Natural Resources, Utah State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Gravitational Waves Could Shed Light on Dark Matter

22.10.2018 | Physics and Astronomy

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>