Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing greenhouse gases lead to dramatic thinning of the upper atmosphere

02.02.2004

The highest layers of the Earth’s atmosphere are cooling and contracting, most likely in response to increasing levels of greenhouse gases, according to a new study by scientists at the Naval Research Laboratory (NRL). This contraction could result in longer orbital lifetimes for both satellites and hazardous space debris.

In a paper to be published February 5 in the Journal of Geophysical Research - Space Physics, John Emmert, Michael Picone, Judith Lean, and Stephen Knowles report that the average density of the thermosphere has decreased by about 10 percent during the past 35 years. The thermosphere is the highest layer in the atmosphere, and begins at an altitude of about 90 kilometers [60 miles].

The study utilized orbital tracking data for 27 space objects that have been aloft for over 30 years and whose closest approach to the Earth ranges from 200-800 kilometers [100-500 miles]. The Space Shuttle typically orbits at 300-450 kilometers [200-280 miles], and the International Space Station is at an altitude of about 400 kilometers [200 miles]. Although the atmosphere is extremely thin in this region (the air at the Earth’s surface is a trillion times thicker), it is enough to exert a drag force on satellites, causing their orbits to decay slowly and ultimately resulting in a fiery disintegration at lower altitudes. By analyzing changes in the orbits of the selected objects, the scientists derived the yearly average density encountered by each object. After adjusting for other factors, the data from every object indicated a long-term decline in the density of the thermosphere.

This decrease in density had been predicted by theoretical simulations of the upper atmosphere’s response to increasing carbon dioxide and other greenhouse gases. In the troposphere (the lowest layer of the atmosphere) greenhouse gases trap infrared radiation, causing the well-known "global warming" effect. Higher in the atmosphere, above about 12 kilometers [seven miles], however, these gases actually enhance the ability of the atmosphere to radiate heat out to space, thereby causing a cooling effect. As the amount of carbon dioxide increases, the upper atmosphere becomes cooler and contracts, bringing lower-density gas to lower heights. Consequently, at a given height, the average density will decrease. Because each layer of the atmosphere rests on the layers below it, small changes at lower altitudes become amplified at higher altitudes. The NRL study found that the observed decrease in density depends on height in the same way as predicted by the theoretical simulations, indicating that greenhouse gases are a likely source of the change.

An extreme example of the greenhouse gas effect can be found on Venus, whose atmosphere is 96 percent carbon dioxide (compared to trace amounts in the Earth’s atmosphere), resulting in a very hot lower atmosphere 400 degrees Celsius [800 degrees Fahrenheit] and a very cold and compact upper atmosphere.

These new results verify and significantly expand a limited earlier investigation, by scientists at The George Washington University, which also used orbital data to derive a long-term decrease in thermospheric density. The new study utilizes more orbital data over a longer period of time and employs more precise methods of analysis. By carefully examining all potential sources of error, Emmert’s team has provided solid evidence that the trend is neither artificial nor the result of physical processes other than internal atmospheric cooling.

Based on this analysis and projections of carbon dioxide levels in the atmosphere, the density at thermospheric heights could be cut in half by the year 2100. This change may present mixed blessings: while operational satellites will be able to stay aloft longer, using less fuel, so will damaging spacecraft debris, potentially increasing the frequency of collisions.

The research was funded by the Office of Naval Research.

Harvey Leifert | AGU
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes

17.07.2018 | Life Sciences

Electronic stickers to streamline large-scale 'internet of things'

17.07.2018 | Information Technology

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>