Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellites see ocean conditions in 3-D, improve forecasts

30.01.2004


Freighters, cruise lines, marine rescuers and coastal managers are among those who could benefit from prototype three-dimensional, three-day ocean condition forecasts created with the assistance of NASA satellite data, computer models and on-site ocean measurements.


WIND DATA FROM QUIKSCAT
This is a QuikSCAT image of winds on the surface of the Pacific Ocean on January 8, 2004. Credit: NASA JPL



Scientists hope to forecast ocean conditions several days ahead, much like regional weather forecasts broadcast on television news. "It’s a three-dimensional look at the ocean, from the surface to the ocean bottom," said Yi Chao of NASA’s Jet Propulsion Laboratory (JPL), Pasadena, Calif., lead scientist on the project. Chao and three colleagues presented their real-time operational forecast system for the Central California Ocean at the recent Annual Meeting of the American Meteorological Society (AMS).

The end product from our 3-D ocean model includes temperature, salinity and current," Chao said. These are available as text or binary data, or can be visualized for further analysis. Seeing the ocean in three dimensions, and knowing how it will behave from top to bottom, will save fuel costs for large shippers by steering away from choppy waters, or moving with the current. The data will also help Coast Guard rescuers, as they would be able to determine which direction people stranded in the water would drift. Several satellite measurements provide input into the forecast system, including near-real time wind data from the Quikscat instrument on NASA’s SeaWinds satellite; ocean height, including waves, measured from NASA’s Topex/Poseidon and Jason satellites; sea surface temperatures measured by the National Oceanic and Atmospheric Administration’s (NOAA) Geostationary Operational Environmental Satellites Advanced Very High Resolution Radiometer instrument.


Aircraft data from the Office of Naval Research is used on cloudy days, when satellites cannot see the ocean surface. A variety of sensors, such as sea gliders that can dive from the ocean surface to several hundred meters depth, ships, and autonomous underwater vehicles, provide ocean water temperature and salinity data. Meters measure ocean currents, and shore- based high-frequency radars provide ocean surface current data. Once these data were input into the forecast system, existing ocean conditions were simulated in 3-D, within 24 hours behind real-time, and more accurate three-day forecasts were then generated in 3-D.

Chao said the NASA 3-D ocean models were useful in planning daily ocean measurement missions during a field campaign conducted last summer in Monterey Bay, Calif. Mission scientists used the forecasts to find interesting areas to observe, such as where cold water from the ocean bottom came up to the surface. Wherever the models seemed to generate an error, more observations were planned, so the forecasts could be improved.

Data is only available for Monterey Bay, where the prototype system was first tested. The next test site will stretch along the coast from San Diego to Baja, Calif. System data are not yet available for public use. Sixteen institutions are evaluating the system or providing data. The researchers hope to eventually issue round-the-clock operational forecasts along all U.S. coastal areas.

In addition to helping with ocean condition forecasts, NASA also is interested in studying the coastal ocean to monitor resources for many purposes including recreation, conservation and commerce. Satellites provide the high-resolution imagery to accomplish this task.


NASA and the Office of Naval Research jointly funded this research. The forecast system exemplifies NASA’s Earth Science Enterprise Coastal Management national application, where agency aerospace research and development of science and technologies are being used with other federal agencies such as NOAA.

Rob Gutro | GSFC
Further information:
http://www.gsfc.nasa.gov/topstory/2004/0113forecastca.html

More articles from Earth Sciences:

nachricht Turbulence creates ice in clouds
08.11.2019 | Leibniz-Institut für Troposphärenforschung e. V.

nachricht Manganese nodules: project on environmental impact during deep sea mining
08.11.2019 | Jacobs University Bremen gGmbH

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

Observing changes in the chirality of molecules in real time

15.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>