Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nutrient-poor oceans generate their food “hot spots”

14.01.2004


The oceans have their desert zones, in other words areas poor in nutrients and unfavourable for phytoplankton to develop. Half of the southern Pacific thus consists of great expanses of warm water with an average temperature of 28 °C (a greater surface area than Europe), which receives no input of deep-source cold water, rich in nutrient salts.

However, in 2000 analyses of satellite observations on the colour of the ocean conducted by American scientists revealed unusually high concentrations of chlorophyll -the green pigment carried by phytoplankton- in these unfertile areas. These accumulations were associated with the movement of Rossby waves and variations in ocean height they generate (2). An initial hypothesis proposed that Rossby waves induce an intermixing which prompts intermingling between the layers of warm water at the surface and the deep cold nutrient-rich water levels. This mixing wouls generate surface influx of nitrates, favourable for phytoplankton development. This hypothesis cannot explain, however, why the chlorophyll concentration peaks are always observed at the warmest spots where the water accumulates under the effect of the passing waves.

The IRD oceanographers and their co-workers investigating these effects (1) consider rather that the Rossby waves act like a rake over the ocean surface, in this way concentrating all floating particles or debris in these places where warmer water accumulates owing to greater sun exposure. This excludes the possibility of nutrients ascending from the deep cold waters by mixing. In the convergence zones produced by wave movements, there would not be any new production of phytoplankton as had been suggested, but rather an accumulation of floating organic particles of a different origin. This floating material’s optical properties are similar to those of chlorophyll, so it gives the same effect as captured by satellite observation of ocean colour, in a way misleading the calculation systems which use these satellite colour data to estimate the chlorophyll concentration.



The researchers have devised a model for testing this original hypothesis and attempting to identify the origin of these floating particles. Such material would be organic by-products from the biological activity, however low-key, at work in the ocean’s surface layer. Instead of plunging down into the deeper layers, part of this organic debris could come back to the surface, maybe thanks to gas bubbles produced by bacteria during fermentation processes, or riding on lipids (lighter than water), for example.
The simulations performed led to validation of this hypothesis. It was also confirmed by way of measurements of chlorophyll concentration, determined in situ in the surface layer, during quarterly campaigns on "Geochemistry, Phytoplankton and Ocean Colour" in the South Pacific, between Tahiti and New-Zealand (3). These observations suggest that the satellite detection system as designed cannot distinguish between chlorophyll and the organic particles, and that the chlorophyll concentration calculated from images of the convergence zones is overestimated.

This study sheds new light on how marine ecosystem processes work in association with the overall physical dynamics of the ocean. In the oligotrophic oceanic environments in question, the water movements generated by the passage of equatorial waves gathers and accumulates in restricted locations what little organic matter there is. What is initially scattered wide over the ocean surface is concentrated into oases of nutrients for fish. The results provide possible clues to the question of survival of marine species in nutrient-poor habitats. They could have significant applications in fishing and in particular for tuna stock management. However, the exact nature of these floating particles remains, however, to be identified. Research investigations are already planned, notably as part of the MATI and Biosope projects of the national programme Proof.


(1) IRD scientists from the Laboratory of Dynamic Oceanography and Climatology of the Institut Pierre-Simon Laplace (Paris) and the Laboratory of geophysical studies and spatial oceanography (Toulouse), researchers from the MREN (Maison de la recherche en environnement naturel) - UMR 8013 CNRS /Université du Littoral.

(2) Equatorial waves are generated by wind variations, atmospheric pressure, etc. They have been found in all latitudes, but they play a prime role at the Equator which acts as a wave-guide. In the tropics two main types of wave can be distinguished: Kelvin waves, which propagate from West to East along the Equator, and Rossby waves, which slowly cross from East to West in tropical latitudes. Kelvin waves arrive at the American coasts where they are reflected to set off back towards the West, on the North side and and the South side of the Equator, in the form of Rossby waves.

(3) There were 12 of these " GeP&CO " campaigns, conducted from 1999 to 2002 as part of a French national programme Proof (Processus océaniques et flux). The objective was to study the variability of phytoplankton populations and its influence on the geochemistry of the oceans.

Marie Guillaume | IRD
Further information:
http://www.ird.fr/us/actualites/fiches/2003/190.htm
http://www.ird.fr/sais/cgi/TrSaS?nomPopulation=unites&procedure=POPULATION.AfficherObjets&action=ArPAGE&nomObjet=R086
http://www.ird.fr

More articles from Earth Sciences:

nachricht Do ice cores help to unravel the clouds of climate history?
21.06.2019 | Leibniz Institute for Tropospheric Research (TROPOS)

nachricht News from the diamond nursery
21.06.2019 | Goethe-Universität Frankfurt am Main

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

Robocabs: The mobility of the future?

25.06.2019 | Studies and Analyses

Skipping Meat on Occasion May Protect Against Type 2 Diabetes

25.06.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>